Обратная связь

Получить информацию о наличии товара вы можете у наших менеджеров, позвонив по телефону Также вы можете написать нам

Принцип работы полевого МОП-транзистора

Опубликовано: 28 Января 2020 10445 0
Поделиться с друзьями

Содержание статьи

  • Устройство и основные характеристики МОП-транзисторов
  • Отличие униполярных транзисторов от биполярных
  • Типы МОП-транзисторов
  • Принцип работы МОП-транзисторов на примере прибора с n-проводимостью
  • Преимущества и недостатки МОП-транзисторов

Устройство и основные характеристики МОП-транзисторов

IRF150P220, Силовой МОП-транзистор

МОП-транзистор (MOSFET, «металл-оксид-полупроводник») – полевой транзистор с изолированным затвором (канал разделен с затвором тонким диэлектрическим слоем). Другое название МОП-транзистора – униполярный. Основные области применения таких приборов – выполнение функций электронного переключателя и усилителя электронных сигналов в старой и современной системотехнике.

Практически все типы MOSFET имеют три вывода:

  • Исток – источник носителей зарядов. Является аналогом эмиттера в биполярном приборе.
  • Сток. Служит для приема носителей заряда от истока. Аналог коллектора биполярного транзистора.
  • Затвор. Выполняет функции управляющего электрода. Аналог в биполярном устройстве – база.

Особая категория – транзисторы с несколькими затворами. Они применяются в цифровой технике для организации логических элементов или в качестве ячеек памяти EEPROM.

Схема транзистора МОП-2

Основные характеристики униполярных транзисторов, учитываемые при выборе нужного прибора:

  • управляющее напряжение;
  • в открытом состоянии – внутреннее сопротивление и наибольшее значение допустимого постоянного тока;
  • в закрытом состоянии – максимально допустимое напряжение прямого типа.

Отличие униполярных транзисторов от биполярных

МОП-транзистор управляется электрополем, которое создается напряжением, приложенным к затвору относительно истока. Полярность прилагаемого напряжения определяется видом канала транзистора (p или n). В отличие униполярных биполярные транзисторы управляются электрическим током. Ток во всех типах этих полупроводников формируется двумя типами зарядов – электронами и дырками.

Полевые (униполярные) транзисторы в отличие от биполярных обладают меньшими собственными шумами в низкочастотном диапазоне. Это свойство обеспечивает их эффективную работу в звукоусилительных устройствах. MOSFET применяют в микросхемах низкочастотных усилителей в автомобильных проигрывателях.

Типы МОП-транзисторов

Униполярные транзисторы делятся на p-канальные или n-канальные. Они могут иметь:

  • Собственный (встроенный) канал. Без напряжения канал открыт. Для закрытия канала необходимо подать ток определенной полярности.
  • Индуцированный (инверсный) канал. При отсутствии приложенного электротока он закрыт. Для его открытия прикладывают напряжение нужной полярности. Для n-канальных транзисторов отпирающим является напряжение, положительное относительно истока. Его величина должна быть больше порогового значения, установленного для данного транзистора. Для p-канальных моделей отпирающим будет отрицательное относительно истока напряжение, приложенное к затвору.

Принцип работы МОП-транзисторов на примере прибора с n-проводимостью

В схему униполярного транзистора с изолированным затвором и n-проводимостью входят:

  • Кремниевая подложка. В подложке n-типа в узлах кристаллической решетки кремния присутствуют отрицательно заряженные атомы и свободные электроны, что достигается введением специальных примесей.
  • Диэлектрик. Служит для изоляции кремниевой подложки от электрода затвора. В качестве диэлектрика используется оксид кремния.

В большинстве MOSFET исток транзистора подключается к полупроводниковой подложке. Между стоком и истоком формируется «паразитный» диод. Ликвидировать отрицательные последствия появления такого диода и даже использовать в положительных целях позволяет его подключение анодом к истоку в n-канальных полевых транзисторах, анодом к стоку – в p-канальных приборах.

Принцип работы:

  1. Между затвором и истоком прикладывается плюсовое напряжение к затвору.
  2. Между металлическим выводом затвора и подложкой появляется электрическое поле.
  3. Электрическое поле притягивает к приповерхностному слою диэлектрика свободные электроны, ранее распределенные в кремниевой подложке.
  4. В приповерхностном слое появляется область проводимости (канал) n-типа, состоящая из свободных электронов.
  5. Между выводами стока и истока появляется «мост», проводящий электрический ток.
  6. Проводимость полевого транзистора регулируется величиной внешнего управляющего напряжения. При его снятии проводящий «мостик» исчезнет и прибор закроется.

Аналогично работает МОП-транзистор p-типа. Показанный выше принцип работы является упрощенным. Приборы, используемые на практике в схемотехнике, имеют более сложное устройство и, следовательно, более сложный принцип работы.

Преимущества и недостатки МОП-транзисторов

Униполярные транзисторы имеют довольно широкое распространение в современной системотехнике благодаря ряду преимуществ, среди которых:

  • возможность мгновенного переключения;
  • отсутствие вторичного пробоя;
  • хорошая эффективность работы при низких напряжениях;
  • стабильность при температурных колебаниях;
  • низкий уровень шума при работе;
  • большой коэффициент усиления сигнала;
  • экономичность в плане энергопотребления;
  • меньшее количество технологических операций при построении схем с использованием МОП-транзисторов по сравнению с применением биполярных приборов.

Применение этих приборов ограничивают следующие недостатки:

  • Важнейший минус – повышенная чувствительность к статическому электричеству. Тонкий слой оксида кремния легко повреждается электростатическими зарядами, поэтому МОП-приборы могут выйти из строя даже при прикосновении к прибору наэлектризованными руками. Современные устройства практически лишены этого недостатка благодаря корпусам, способным минимизировать воздействие статики. Также в них могут интегрироваться защитные устройства по типу стабилитронов.
  • Появление нестабильности работы при напряжении перегрузки.
  • Разрушение структуры, начиная от температуры +150 °C. У биполярных приборов критической является температура +200 °C.

Постоянный поиск по получению хороших эксплуатационных свойств высокомощных униполярных транзисторов привел к изобретению гибридного IGBT-транзистора. Эти устройства объединили лучшие качества биполярного и полевых транзисторов.


Оцените статью

(0)
Что вам не понравилось?


Анатолий Мельник
Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.

Комментарии

Нет комментариев
Добавить комментарий

Возврат к списку

X
Заказать обратный звонок Ваше имя: Телефон: Дата: Время звонка: Комментарий:
Ваша заявка отправлена!