

TEXAS INSTRUMENTS

TPS22968, TPS22968N

SLVSCG3F – JANUARY 2014 – REVISED JULY 2017

TPS22968 Dual Channel, Ultra-Low Resistance Load Switch

1 Features

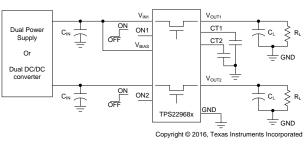
- Integrated Dual Channel Load Switch
- Input Voltage Range: 0.8 V to 5.5 V
- VBIAS Voltage Range: 2.5 V to 5.5 V
 Ideal for 1S Battery Configuration
- Ultra-Low R_{ON} Resistance
 - $R_{ON} = 27 \text{ m}\Omega \text{ at } V_{IN} = 5 \text{ V} (V_{BIAS} = 5 \text{ V})$
 - R_{ON} = 25 m Ω at V_{IN} = 3.3 V (V_{BIAS} = 5 V)
 - R_{ON} = 25 m Ω at V_{IN} = 1.8 V (V_{BIAS} = 5 V)
- 4-A Maximum Continuous Switch Current per Channel
- Low Quiescent Current
 - 55 μ A at V_{BIAS} = 5 V (Both Channels)
 - 55 μ A at V_{BIAS} = 5 V (Single Channel)
- Low Control Input Threshold Enables Use of 1.2-,1.8-, 2.5-, 3.3-V Logic
- Configurable Rise Time⁽¹⁾
- Quick Output Discharge (QOD)⁽²⁾ (Optional)
- SON 14-Pin Package with Thermal Pad
- ESD Performance Tested per JEDEC Standard
 2-kV HBM and 1-kV CDM
- Latch-Up Performance Exceeds 100 mA per JESD 78, Class II
- GPIO Enable Active High
- TPS22968N: Product Preview Only
- ⁽¹⁾ See the *Application Information* section for CT value vs. rise time
- $^{(2)}$ This feature discharges the output of the switch to GND through a 270- Ω resistor, preventing the output from floating.

2 Applications

- Ultrabook™
- Notebooks and Netbooks
- Tablets
- Consumer Electronics
- Set-Top Boxes
- Telecom Systems

3 Description

The TPS22968x is a small, ultra-low R_{ON}, dualchannel load switch with controlled turn on. The device contains two N-channel MOSFETs that can operate over an input voltage range of 0.8 to 5.5 V and can support a maximum continuous current of 4 A per channel. Each switch is independently controlled by an on and off input (ON1 and ON2), which is capable of interfacing directly with lowvoltage control signals. In TPS22968, a 270- Ω onchip load resistor is added for output quick discharge when switch is turned off.


The TPS22968x is available in a small, space-saving package (DPU) with integrated thermal pad allowing for high power dissipation. The device is characterized for operation over the free-air temperature range of -40 to $+105^{\circ}$ C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPS22968 TPS22968N	WSON (14)	3.00 mm × 2.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application Schematic

1 2

3

4

5

6

7

Pin Configuration and Functions 4 1 Specifications 5 1 7.1 Absolute Maximum Ratings 5 7.2 FSD Batiman 5

	7.1	Absolute Maximum Ratings 5
	7.2	ESD Ratings 5
	7.3	Recommended Operating Conditions 5
	7.4	Thermal Information 5
	7.5	Electrical Characteristics (V _{BIAS} = 5 V) 6
	7.6	Electrical Characteristics (V _{BIAS} = 2.5 V)7
	7.7	Switching Characteristics 8
	7.8	Typical DC Characteristics 8
	7.9	Typical AC Characteristics 12
8	Para	ameter Measurement Information 14
9	Deta	ailed Description 15
	9.1	Overview 15
	9.2	Functional Block Diagram 15

Features 1

Applications 1

Description 1

Revision History..... 2

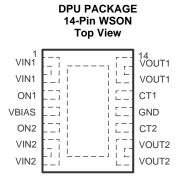
Device Comparison 4

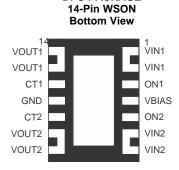
	9.3	Feature Description	16
	9.4	Device Functional Modes	17
10	Арр	lication and Implementation	18
	10.1	Application Information	18
	10.2	Typical Application	21
11	Pow	er Supply Recommendations	24
12	Lay	out	24
	12.1	Layout Guidelines	
	12.2	Layout Example	24
13	Dev	ice and Documentation Support	25
	13.1	Device Support	25
	13.2	Documentation Support	25
	13.3	Related Links	25
	13.4	Receiving Notification of Documentation Updates	25
	13.5	Community Resources	25
	13.6	Trademarks	25
	13.7	Electrostatic Discharge Caution	26
	13.8	Glossary	26
14	Мес	hanical, Packaging, and Orderable	
	Info	mation	26

4 Revision History

Changes from Revision D (March 2016) to Revision E	Page
Changed QOD description from (TPS22968 only) to (Optional) in Features se	ction 1
Changes from Revision E (July 2016) to Revision F	Page
Changed Functional Block Diagram	
Changes from Revision C (October 2015) to Revision D	Page
Made Changes to Thermal Considerations	
Changes from Revision B (June 2015) to Revision C	Page
Updated information for TPS22968N release.	
Updated "TEST CONDITIONS" for RON.	
Updated "TEST CONDITIONS" for RON	
Changes from Revision A (July 2014) to Revision B	Page
Updated Typical Characteristics graphs	
Changes from Original (January 2014) to Revision A	Page
 Added Handling Rating table, Feature Description section, Device Functional Implementation section, Power Supply Recommendations section, Layout sec Support section, and Mechanical, Packaging, and Orderable Information sect 	ction, Device and Documentation

Texas Instruments


www.ti.com



5 Device Comparison

DEVICE	Ron (typ) at VIN = 3.3 V, VBIAS = 5 V	QUICK OUTPUT DISCHARGE	MAXIMUM OUTPUT CURRENT	ENABLE
TPS22968	25 mΩ	Yes	4 A	Active High
TPS22968N	25 mΩ	No	4 A	Active High

6 Pin Configuration and Functions

DPU PACKAGE

Pin Functions

	PIN	1/0	DECODIDION			
NO.	NAME	I/O	DESCRIPTION			
1	VIN1		Switch 1 input Durage this input with a coronic conspiter to CND			
2	VINT	1	Switch 1 input. Bypass this input with a ceramic capacitor to GND			
3	ON1	Ι	Active-high switch 1 control input. Do not leave floating			
4	VBIAS	I	Bias voltage. Power supply to the device. Recommended voltage range for this pin is 2.5 V to 5.5 V. See the <i>VIN and VBIAS Voltage Range</i> section			
5	ON2	Ι	Active-high switch 2 control input. Do not leave floating			
6)/INO		Curitale Quinnut Durance this instat with a comparison of a CNID			
7	VIN2 I		Switch 2 input. Bypass this input with a ceramic capacitor to GND			
8		_	Outlet 0 suited			
9	VOUT2	0	Switch 2 output			
10	CT2	0	Switch 2 slew rate control. Can be left floating			
11	GND		Ground			
12	CT1	0	Switch 1 slew rate control. Can be left floating			
13		_	Curticle 2 curtant			
14	VOUT1	0	Switch 2 output			
15	Thermal Pad	_	Thermal pad (exposed center pad) to alleviate thermal stress. Tie to GND. See the <i>Application Information</i> section for layout guidelines			

TPS22968, TPS22968N

SLVSCG3F-JANUARY 2014-REVISED JULY 2017

TEXAS INSTRUMENTS

www.ti.com

7 Specifications

7.1 Absolute Maximum Ratings

Over operating free-air temperature (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT ⁽²⁾
V _{IN1,2}	Input voltage	-0.3	6	V
V _{BIAS}	Bias voltage	-0.3	6	V
V _{OUT1,2}	Output voltage	-0.3	6	V
V _{ON1,2}	ON voltage	-0.3	6	V
I _{MAX}	Maximum continuous switch current per channel, T _A = 30 °C		4	А
I _{PLS}	Maximum pulsed switch current, pulse < 300 µs, 2% duty cycle		6	А
TJ	Maximum junction temperature		125	°C
T _{stg}	Storage temperature	-65	150	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal.

7.2 ESD Ratings

		VALUE	UNIT
V _(ESD) Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	v
	Electrostatic discharge	Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ ±2000

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions.

7.3 Recommended Operating Conditions

			MIN	MAX	UNIT
V _{IN1,2}	Input voltage		0.8	V_{BIAS}	V
V _{BIAS}	Bias voltage		2.5	5.5	V
V _{ON1,2}	ON voltage		0	5.5	V
V _{OUT1,2}	Output voltage			$V_{\rm IN}$	V
V _{IH, ON1,2}	High-level input voltage, ON1,2	V _{BIAS} = 2.5 V to 5.5 V	1.2	5.5	V
V _{IL, ON1,2}	Low-level input voltage, ON1,2	V _{BIAS} = 2.5 V to 5.5 V	0	0.5	V
C _{IN1,2}	Input capacitor		1 ⁽¹⁾		μF
T _A	Operating free-air temperature (2)		-40	105	°C

(1) See the *Application Information* section.

(2) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature $[T_{A(max)}]$ is dependent on the maximum operating junction temperature $[T_{J(max)}]$, the maximum power dissipation of the device in the application $[P_{D(max)}]$, and the junction-to-ambient thermal resistance of the part/package in the application $(R_{\theta JA})$, as given by the following equation: $T_{A(max)} = T_{J(max)} - (R_{\theta JA} \times P_{D(max)})$.

7.4 Thermal Information

		TPS22968	
	THERMAL METRIC ⁽¹⁾ (2)	DPU (WSON)	UNIT
		14 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	62.5	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	70.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	23.2	°C/W
ΨJT	Junction-to-top characterization parameter	2.5	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

(2) For thermal estimates of this device based on PCB copper area, see the *TI PCB Thermal Calculator*.

Thermal Information (continued)

		TPS22968	
	THERMAL METRIC ⁽¹⁾ ⁽²⁾	DPU (WSON)	UNIT
		14 PINS	
Ψјв	Junction-to-board characterization parameter	23.2	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	9	°C/W

7.5 Electrical Characteristics (V_{BIAS} = 5 V)

Unless otherwise noted, the specification in the following table applies over the operating ambient temperature $-40^{\circ}C \le T_A \le +105^{\circ}C$ (full) and $V_{BIAS} = 5$ V. Typical values are for $T_A = 25^{\circ}C$ (unless otherwise noted).

	$\frac{1}{PARAMETER}$	TEST CONDIT		T _A	MIN TYP	MAX	UNIT
POWER S	UPPLIES AND CURRENTS						
V _{BIAS} quiescent current (both channels)		$I_{OUT1} = I_{OUT2} = 0, V_{IN1,2} = V_{ON1,2}$	$I_{OUT1} = I_{OUT2} = 0, V_{IN1,2} = V_{ON1,2} = V_{BIAS} = 5 V$		55	70	μA
I _{Q, VBIAS}	V_{BIAS} quiescent current (single channel) I_{OUT1} = I_{OUT2} = 0, V_{ON2} = 0 V, $V_{IN1,2}$ = V_{ON1} = V_{BIAS} = 5 V		–40°C to +105°C	55	68	μA	
I _{SD, VBIAS}	V _{BIAS} shutdown current	V _{ON1,2} = 0 V, V _{OUT1,2} = 0 V		–40°C to +105°C	1	2	μA
			N 5.V	-40°C to +85°C	0.5	8	
			V _{IN1,2} = 5 V	-40°C to +105°C		10	
				-40°C to +85°C	0.1	3	
			V _{IN1,2} = 3.3 V	-40°C to +105°C		4	
	VIN1.2 shutdown current (per		V 4.0.V	-40°C to +85°C	0.07	2	
I _{SD, VIN1,2}	channel)	$V_{ON1,2} = 0 V, V_{OUT1,2} = 0 V$	V _{IN1,2} = 1.8 V	-40°C to +105°C		3	μA
				-40°C to +85°C	0.05	1	
			V _{IN1,2} = 1.2 V	-40°C to +105°C		2	
		-40°C to +85°C	0.04	1	ĺ		
			V _{IN1,2} = 0.8 V	-40°C to +105°C		2	
I _{ON1,2}	ON pin input leakage current	V _{ON} = 5.5 V		-40°C to +105°C		0.1	μA
RESISTAN	ICE CHARACTERISTICS	- I				1	
				25°C	27	36	
			V _{IN} = 5 V	-40°C to +85°C		40	mΩ
				-40°C to +105°C		42	
				25°C	25	34	
			V _{IN} = 3.3 V	-40°C to +85°C		38	
				-40°C to +105°C		40	
			V _{IN} = 1.8 V	25°C	25	34	mΩ
				-40°C to +85°C		38	
_		I _{OUT} = -200 mA, V _{BIAS} = 5 V		-40°C to +105°C		40	
R _{ON}	On-state resistance	$V_{ON1,2} = 5 V$		25°C	25	34	
			V _{IN} = 1.5 V	-40°C to +85°C		38	mΩ
				-40°C to +105°C		40	
				25°C	25	34	mΩ
			V _{IN} = 1.2 V	-40°C to +85°C		38	
				–40°C to +105°C		40	
				25°C	25	34	
			V _{IN} = 0.8 V	-40°C to +85°C		38	mΩ
				–40°C to +105°C		40	
R _{PD} ⁽¹⁾	Output pulldown resistance	V _{IN} = 5 V, V _{ON} = 0 V, I _{OUT} = 10	mA	-40°C to +105°C	270	320	Ω

(1) TPS22968 only.

TPS22968, TPS22968N

SLVSCG3F-JANUARY 2014-REVISED JULY 2017

www.ti.com

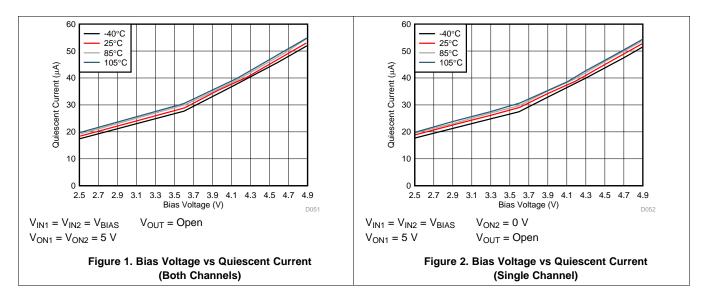
STRUMENTS

EXAS

7.6 Electrical Characteristics ($V_{BIAS} = 2.5 V$)

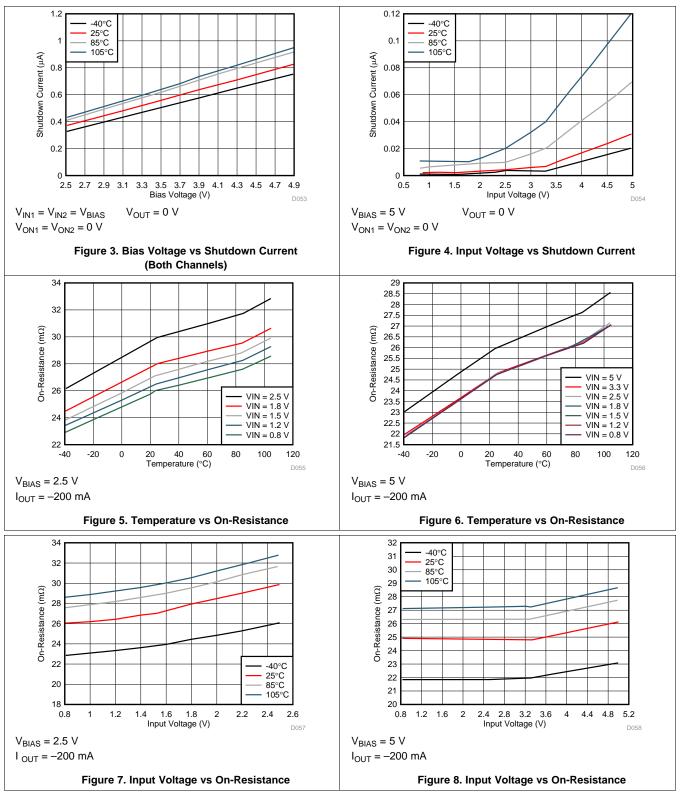
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature –40 °C \leq T_A \leq +105 °C (full) and V_{BIAS} = 2.5 V. Typical values are for T_A = 25°C (unless otherwise noted).

	PARAMETER	ONS	T _A	MIN TYP	MA X	UNIT		
POWER S	UPPLIES AND CURRENTS		I					
	V _{BIAS} quiescent current (both channels)	$I_{OUT1} = I_{OUT2} = 0, V_{IN1,2} = V_{ON1,2}$	= V _{BIAS} = 2.5 V	-40°C to +105°C	18	27	μA	
I _{Q, VBIAS}	V _{BIAS} quiescent current (single channel)	$I_{OUT1} = I_{OUT2} = 0, V_{ON2} = 0 V, V_{IN}$ 2.5 V	$V_{\rm H1,2} = V_{\rm ON1} = V_{\rm BIAS} =$	-40°C to +105°C	18	27	μA	
I _{SD, VBIAS}	V _{BIAS} shutdown current	V _{ON1,2} = 0 V, V _{OUT1,2} = 0 V		–40°C to +105°C	0.5	2	μA	
			V - 2 5 V	-40°C to +85°C	0.1	2		
			V _{IN1,2} = 2.5 V	–40°C to +105°C		4		
			V 1.0.V	-40°C to +85°C	0.07	2		
	VIN1.2 shutdown current (per		V _{IN1,2} = 1.8 V	-40°C to +105°C		3		
SD, VIN1,2	channel)	V _{ON1,2} = 0 V, V _{OUT1,2} = 0 V	V 10V	-40°C to +85°C	0.05	1	μA	
			V _{IN1,2} = 1.2 V	-40°C to +105°C		2		
			V = 0.8 V	-40°C to +85°C	0.04	1		
			V _{IN1,2} = 0.8 V	-40°C to +105°C		2		
ON1,2	ON pin input leakage current	V _{ON} = 5.5 V		-40°C to +85°C		0.1	μA	
RESISTAN	NCE CHARACTERISTICS							
				25°C	30	39		
			V _{IN} = 2.5 V	-40°C to +85°C		44	mΩ	
				-40°C to +105°C		46		
				25°C	28	36	-	
			V _{IN} = 1.8 V	-40°C to +85°C		41		
				-40°C to +105°C		43		
				25°C	28	36		
R _{ON}	On-state resistance	$I_{OUT} = -200 \text{ mA}, V_{BIAS} = 2.5 \text{ V}$ $V_{ON1,2} = 5 \text{ V}$	V _{IN} = 1.5 V	-40°C to +85°C		41	mΩ	
		VON1,2 - 3 V		-40°C to +105°C		43		
				25°C	27	36		
			V _{IN} = 1.2 V	-40°C to +85°C		41	mΩ	
				-40°C to +105°C		43		
				25°C	26	35		
			V _{IN} = 0.8 V	-40°C to +85°C		39	mΩ	
				-40°C to +105°C		41		
R _{PD} ⁽¹⁾	Output pulldown resistance	$V_{IN} = 2.5 V, V_{ON} = 0 V, I_{OUT} = 10$	mA	-40°C to +105°C	270	320	Ω	


(1) TPS22968 only.

6

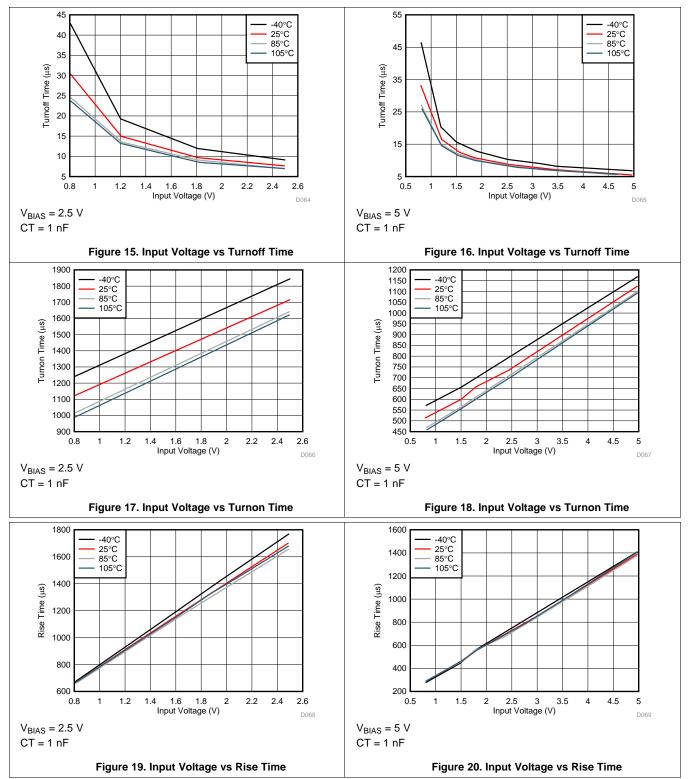
7.7 Switching Characteristics


	PARAMETER	TEST CONDITION	MIN TYP	MAX	UNIT
V _{IN} =	V _{ON} = V _{BIAS} = 5 V, T _A = 25 °C (unless o	therwise noted)			
t _{ON}	Turnon time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	1128		
t _{OFF}	Turnoff time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	5		
t _R	V _{OUT} rise time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	1387		μs
t _F	V _{OUT} fall time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	2		
t _D	ON delay time	R_L = 10 Ω , C_L = 0.1 μ F, CT = 1000 pF	455		
V _{IN} =	0.8 V, $V_{ON} = V_{BIAS} = 5 V$, $T_A = 25 \ ^{o}C$ (ur	nless otherwise noted)			
t _{ON}	Turnon time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	508		
t _{OFF}	Turnoff time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	33		
t _R	V _{OUT} rise time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	273		μs
t _F	V _{OUT} fall time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	2		
t _D	ON delay time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	377		
V _{IN} =	2.5 V, V _{ON} = 5 V, V _{BIAS} = 2.5V, T _A = 25	℃ (unless otherwise noted)			
t _{ON}	Turnon time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	1718		
t _{OFF}	Turnoff time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	7		
t _R	V _{OUT} rise time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	1701		μs
t _F	V _{OUT} fall time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	2		
t _D	ON delay time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	859		
V _{IN} =	0.8 V, V _{ON} = 5 V, V _{BIAS} = 2.5 V, T _A = 25	°C (unless otherwise noted)			
t _{ON}	Turnon time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	1117		
t _{OFF}	Turnoff time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	30		
t _R	V _{OUT} rise time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	651		μs
t _F	V _{OUT} fall time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	2		
t _D	ON delay time	R_L = 10 Ω, C_L = 0.1 µF, CT = 1000 pF	775		

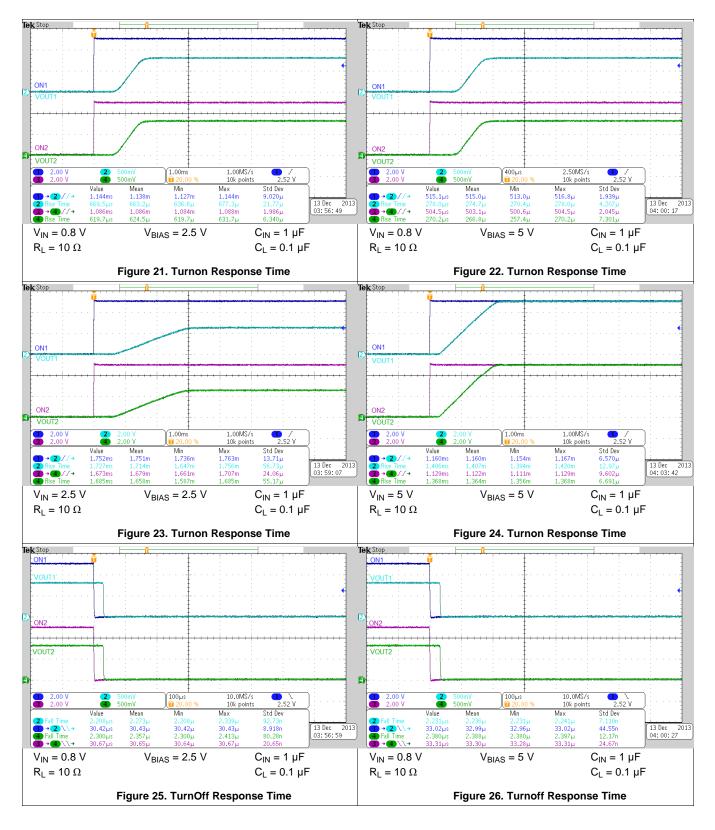
7.8 Typical DC Characteristics



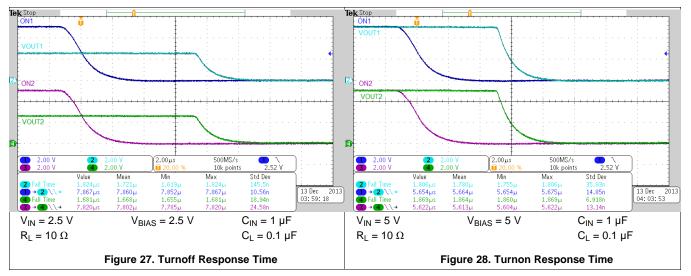
Typical DC Characteristics (continued)



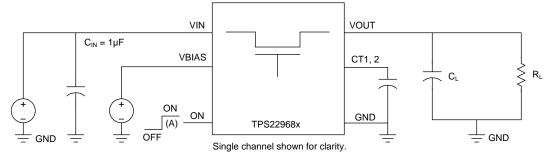
Typical DC Characteristics (continued)



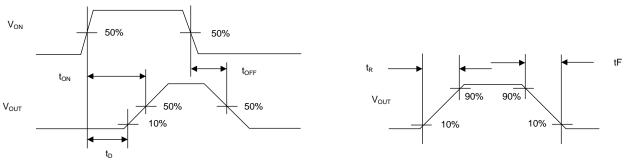
Typical DC Characteristics (continued)



7.9 Typical AC Characteristics



Typical AC Characteristics (continued)



8 Parameter Measurement Information

Copyright © 2016, Texas Instruments Incorporated

TIMING DIAGRAMS

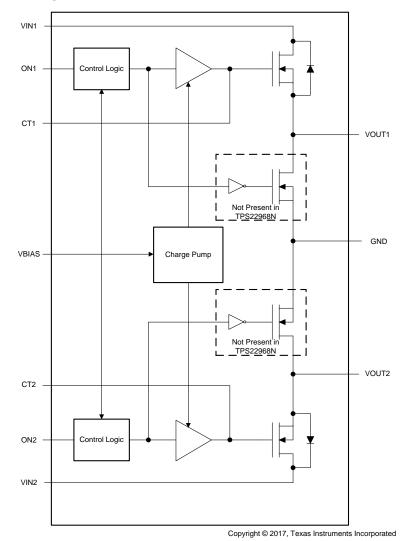
A. Rise and fall times of the control signal is 100 ns.

Figure 29. Test Circuit and Timing Waveforms

TEXAS INSTRUMENTS

www.ti.com

9 Detailed Description


9.1 Overview

The TPS22968 is a 5.5-V, 4-A, dual-channel ultra-low R_{ON} load switch with controlled turnon. The device contains two N-channel MOSFETs. Each channel can support a maximum continuous current of 4 A and is controlled by an on and off GPIO-compatible input. The ON pin must be connected and cannot be left floating. The device is designed to control the turnon rate and therefore the inrush current. By controlling the inrush current, power supply sag can be reduced during turnon. The slew rate for each channel is set by connecting a capacitor to GND on the CT pins.

The slew rate is proportional to the capacitor on the CT pin. See the *Adjustable Rise Time* section to determine the correct CT value for a desired rise time.

The internal circuitry is powered by the VBIAS pin, which supports voltages from 2.5 V to 5.5 V. This circuitry includes the charge pump, QOD (optional), and control logic. For these internal blocks to function correctly, a voltage between 2.5 V and 5.5 V must be supplied to VBIAS.

When a voltage is supplied to VBIAS, the ON1 pin goes low, and the ON2 pins go low, the QOD turns on. This connects VOUT1 and VOUT2 to GND through an on-chip resistor. The typical pulldown resistance (R_{PD}) is 270 Ω .

9.2 Functional Block Diagram

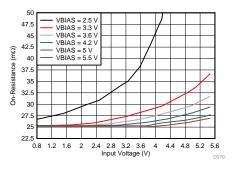
9.3 Feature Description

The ON pins control the state of the switch. Asserting ON high enables the switch. ON is active high and has a low threshold, making it capable of interfacing with low-voltage signals. The ON pin is compatible with standard GPIO logic threshold. It can be used with any microcontroller with 1.2 V or higher GPIO voltage. This pin cannot be left floating and must be tied either high or low for proper functionality.

9.3.2 Input Capacitor (Optional)

When the switch turns on into a discharged load capacitor or short-circuit, a capacitor must be placed between VIN and GND to limit the voltage drop on the input supply caused by transient inrush currents. A 1- μ F ceramic capacitor (C_{IN}), placed close to the pins, is sufficient. Higher values of C_{IN} can be used to further reduce the voltage drop during high-current application. When switching heavy loads, TI recommends having an input capacitor 10x higher than the output capacitor to avoid excessive voltage drop.

9.3.3 Output Capacitor (Optional)


TI highly recommends a C_{IN} greater than C_L , because of the integrated body diode in the NMOS switch. A C_L greater than C_{IN} can cause the voltage on VOUT to exceed VIN when the system supply is removed. This could result in current flow through the body diode from VOUT to VIN. TI recommends a C_{IN} to C_L ratio of 10 to 1 for minimizing V_{IN} dip caused by inrush currents during startup.

9.3.4 QOD (Optional)

The TPS22968 includes a QOD feature. When the switch is disabled, a discharge resistor is connected between VOUT and GND. This resistor has a typical value of 270 Ω and prevents the output from floating while the switch is disabled.

9.3.5 VIN and VBIAS Voltage Range

For optimal R_{ON} performance, make sure $V_{IN} \le V_{BIAS}$. The device is still functional if $V_{IN} > V_{BIAS}$, but it exhibits R_{ON} greater than what is listed in the *Electrical Characteristics* ($V_{BIAS} = 5 V$) and *Electrical Characteristics* ($V_{BIAS} = 2.5 V$) table. See Figure 30 for an example of a typical device. Notice the increasing R_{ON} as V_{IN} exceeds V_{BIAS} voltage. Be sure to never exceed the maximum voltage rating for V_{IN} and V_{BIAS} .

Temperature = 25°C

 $I_{OUT} = 200 \text{ mA}$

Figure 30. On-Resistance vs Input Voltage

Feature Description (continued)

9.3.6 Adjustable Rise Time

A capacitor to GND on the CT pins sets the slew rate for each channel. The capacitor to GND on the CT pins must be rated for 25 V and above. An approximate formula for the relationship between CT and slew rate with $V_{BIAS} = 5$ V is shown in Equation 1.

SR = 0.32 × CT + 13.7

where

- SR is the slew rate (in μ s/V)
- CT is the capacitance value on the CT pin (in pF)
- The units for the constant 13.7 is in μ s/V.

Rise time can be calculated by multiplying the input voltage by the slew rate. Table 1 contains rise time values measured on a typical device.

	Тур	Typical values at 25°C with a 25-V X7R 10% ceramic capacitor on CT $^{(1)}$													
CTx (pF)	VIN = 5 V	VIN = 3.3 V	VIN = 2.5 V	VIN = 1.8 V	VIN = 1.5 V	VIN = 1.2V	VIN = 0.8 V								
0	65	48	41	35	31	29	24								
220	378	253	197	152	131	111	83								
470	704	474	363	272	234	192	140								
1000	1387	931	717	544	449	372	273								
2200	3062	2021	1536	1173	991	825	595								
4700	7091	4643	3547	2643	2213	1828	1349								
10000	14781	9856	7330	5507	4600	3841	2805								

Table 1. Rise Time Table

(1) RISE TIME (µs) 10% - 90%, C_L = 0.1 µF, C_{IN} = 1 µF, R_L = 10 Ω , V_{BIAS} = 5 V

9.4 Device Functional Modes

Table 2 lists the device function table.

Table 2. Functional Table

ONx	VINx to VOUTx	VOUTx to GND
L	Off	On
Н	On	Off

(1)

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

This section highlights some of the design considerations for implementing this device in various applications. A PSPICE model for this device is also available on the product page for additional information.

10.1.1 Parallel Configuration

To increase the current capabilities and lower the R_{ON} by approximately 50%, both channels can be placed in parallel as shown in Figure 31 (parallel configuration). With this configuration, the CT1 and CT2 pins can be tied together to use one capacitor, CT, as shown in Figure 31. With a single CT capacitor, the rise time is half of the typical rise-time value. Refer to the Table 1 for typical timing values.

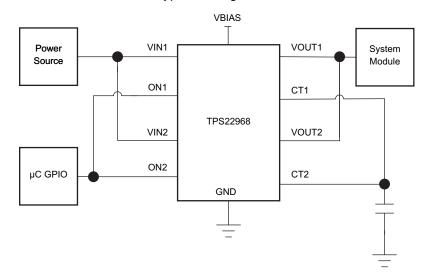


Figure 31. Parallel Configuration

Application Information (continued)

10.1.2 Standby Power Reduction

Any end equipment that is powered from the battery has a need to reduce current consumption to keep the battery charged for a longer time. TPS22968 helps to accomplish this by turning off the supply to the modules that are in standby state, and therefore, significantly reduces the leakage current overhead of the standby modules. See Figure 32.

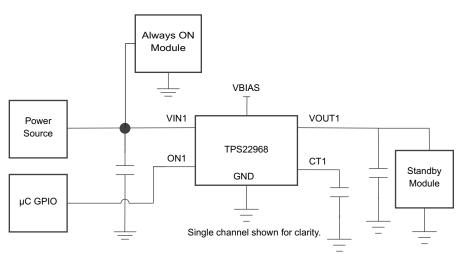
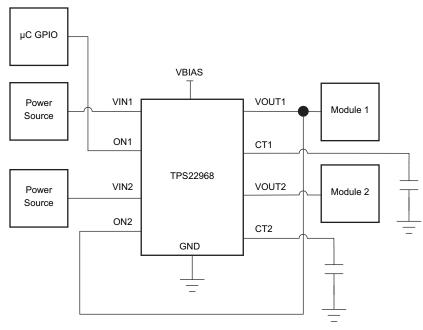



Figure 32. Standby Power Reduction

10.1.3 Power Supply Sequencing Without a GPIO Input

In many end equipments, there is a need to power up various modules in a predetermined manner. The TPS22968 can solve the problem of power sequencing without adding any complexity to the overall system. See Figure 33.

VIN1 must be greater V_{IH}.

Application Information (continued)

10.1.4 Reverse Current Blocking

In certain applications, it may be desirable to have reverse current blocking. Reverse current blocking prevents current from flowing from the output to the input of the load switch when the device is disabled. With the following configuration, the TPS22968 can be converted into a single-channel switch with reverse current blocking. In this configuration, VIN1 or VIN2 can be used as the input and VIN2 or VIN1 is the output. See Figure 34.

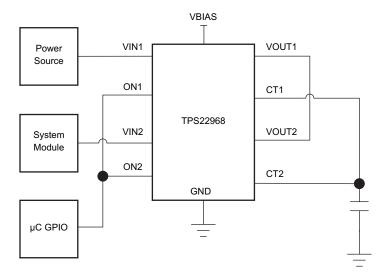
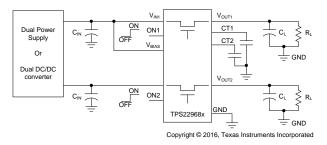
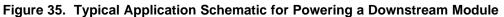


Figure 34. Reverse Current Blocking

TPS22968, TPS22968N


SLVSCG3F-JANUARY 2014-REVISED JULY 2017


www.ti.com

STRUMENTS

10.2 Typical Application

This application demonstrates how the TPS22968 can be used to power downstream modules with large capacitances. The example in Figure 35 TPS22968 is powering a 100-µF capacitive output load.

10.2.1 Design Requirements

For this design example, use the following Table 3 as the input parameters.

DESIGN PARAMETER	EXAMPLE VALUE			
V _{IN}	3.3 V			
V _{BIAS}	5 V			
Load current	4 A			
Output capacitance (CL)	22 µF			
Allowable inrush current on VOUT	0.33 A			

Table 3. Design Parameters

10.2.2 Detailed Design Procedure

To begin the design process, the designer must know the following:

- V_{IN} voltage
- V_{BIAS} voltage
- Load current
- Allowable inrush current on VOUT due to C_L capacitor

10.2.2.1 VIN to VOUT Voltage Drop

The VIN to VOUT voltage drop in the device is determined by the R_{ON} of the device and the load current. The R_{ON} of the device depends upon the V_{IN} and V_{BIAS} conditions of the device. Refer to the R_{ON} specification of the device in the *Electrical Characteristics* (V_{BIAS} = 5 V) and *Electrical Characteristics* (V_{BIAS} = 2.5 V). After the R_{ON} of the device is determined based upon the V_{IN} and V_{BIAS} conditions, use Equation 2 to calculate the VIN to VOUT voltage drop:

 $\Delta V = I_{LOAD} \times R_{ON}$

where

- ΔV is the voltage drop from VIN to VOUT
- I_{LOAD} is the load current
- R_{ON} is the On-resistance of the device for a specific V_{IN} and V_{BIAS} combination

(2)

An appropriate I_{LOAD} must be chosen such that the I_{MAX} specification of the device is not violated.

10.2.2.2 Inrush Current

To determine how much inrush current is caused by the C_L capacitor, use Equation 3.

$$I_{\text{INRUSH}} = C_{\text{L}} \times \frac{dV_{\text{OUT}}}{dt}$$

where

- I_{INRUSH} is the amount of inrush caused by C_L
- C_L is the capacitance on VOUT
- dt is the time it takes for change in V_{OUT} during the ramp up of VOUT when the device is enabled
- dV_{OUT} is the change in V_{OUT} during the ramp up of VOUT when the device is enabled

The device offers adjustable rise time for VOUT. This feature allows the user to control the inrush current during turnon through the CTx pins. The appropriate rise time can be calculated using the design requirements and the inrush current equation (Equation 3). See Equation 4 and Equation 5.

330 mA = 22 μF × 3.3 V / dt dt = 220 μs (4) (5)

(6)

(7)

(3)

To ensure an inrush current of less than 330 mA, choose a CT based on Table 1 or Equation 1 value that yields a rise time of more than 220 µs. See the oscilloscope captures in the *Application Curves* for an example of how the CT capacitor can be used to reduce inrush current. See Table 1 for correlation between rise times and CT values.

An appropriate C_L value must be placed on VOUT such that the I_{MAX} and I_{PLS} specifications of the device are not violated.

10.2.2.3 Thermal Considerations

The maximum IC junction temperature must be restricted to 125°C under normal operating conditions. To calculate the maximum allowable dissipation, $P_{D(max)}$ for a given output current and ambient temperature, use Equation 6.

$$P_{D(MAX)} = \frac{T_{J(MAX)} - T_A}{R_{\theta JA}}$$

where

- P_{D(max)} is the maximum allowable power dissipation
- T_{J(max)} is the maximum allowable junction temperature (125°C for the TPS22968)
- T_A is the ambient temperature of the device
- R_{0JA} is the junction to air thermal impedance. See the *Thermal Information* table. This parameter is highly dependent upon board layout.

Equation 7 to Equation 10 and Equation 11 to Equation 13 show two examples to determine how to use this information correctly:

For $V_{BIAS} = 5$ V, $V_{IN} = 5$ V, the maximum ambient temperature with a 4-A load through each channel can be determined by using Equation 7 to Equation 10:

 $P_D = I^2 \times R \times 2$ (multiplied by 2 because there are two channels)

$$2 \times l^2 \times R = \frac{T_{J(MAX)} - T_A}{R_{\theta JA}}$$
(8)

$$T_{A} = T_{J(MAX)} - R_{\theta JA} \times 2 \times l^{2} \times R$$
(9)

$$T_{A} = 125^{\circ}C - 62.5^{\circ}C/W \times 2 \times (4 \text{ A})^{2} \times 27 \text{ m}\Omega = 71^{\circ}C$$
(10)

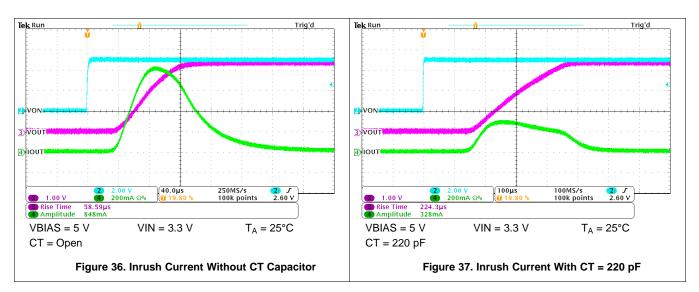
For $V_{BIAS} = 5 \text{ V}$, $V_{IN} = 5 \text{ V}$, the maximum continuous current for an ambient temperature of 85°C with the same current flowing through each channel can be determined by using Equation 11 to Equation 13:

$$2 \times l^2 \times R = \frac{T_{J(MAX)} - T_A}{R_{\theta JA}}$$
(11)

Copyright © 2014–2017, Texas Instruments Incorporated

NSTRUMENTS

EXAS

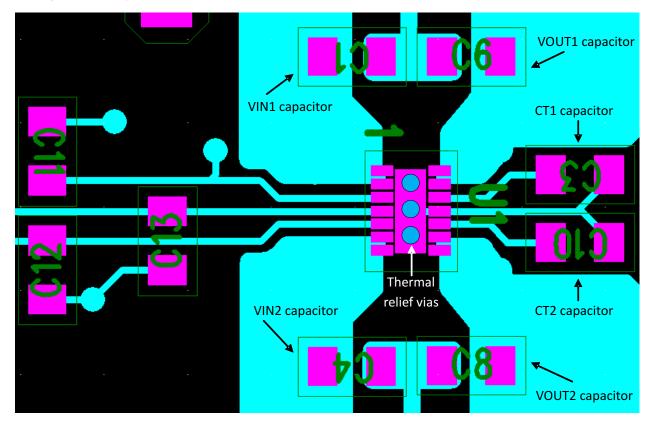

$$I = \sqrt{\frac{T_{J(MAX)} - T_{A}}{2 \times R \times R_{\theta JA}}}$$
(12)

$$I = \sqrt{\frac{125^{\circ}C - 105^{\circ}C}{2 \times 27 \text{ m}\Omega \times 62.5^{\circ}C/W}} = 3.44 \text{ A per channel}$$

(13)

10.2.3 Application Curves

The twp scope captures show the usage of a CT capacitor in conjunction with the device. A higher CT value results in a slower rise and a lower inrush current.


11 Power Supply Recommendations

The device is designed to operate from a V_{BIAS} range of 2.5 V to 5.5 V and V_{IN} range of 0.8 V to 5.5 V. This supply must be well regulated and placed as close to the device pin as possible with the recommended 1- μ F bypass capacitor. If the supply is located more than a few inches from the device pins, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. If additional bulk capacitance is required, an electrolytic, tantalum, or ceramic capacitor of 10 μ F may be sufficient.

12 Layout

12.1 Layout Guidelines

- VIN and VOUT traces must be as short and wide as possible to accommodate for high current.
- Use vias under the exposed thermal pad for thermal relief for high current operation.
- VINx pins must be bypassed to ground with low-ESR ceramic bypass capacitors. The typical recommended bypass capacitance is 1-µF ceramic with X5R or X7R dielectric. This capacitor must be placed as close to the device pins as possible.
- VOUTx pins must be bypassed to ground with low-ESR ceramic bypass capacitors. The typical recommended bypass capacitance is one-tenth of the VINx bypass capacitor of X5R or X7R dielectric rating. This capacitor must be placed as close to the device pins as possible.
- The VBIAS pin must be bypassed to ground with low-ESR ceramic bypass capacitors. The typical recommended bypass capacitance is 0.1-µF ceramic with X5R or X7R dielectric.
- The CTx capacitors must be placed as close to the device pins as possible. The typical recommended CTx capacitance is a capacitor of X5R or X7R dielectric rating with a rating of 25 V or higher.

12.2 Layout Example

TEXAS INSTRUMENTS

www.ti.com

13 Device and Documentation Support

13.1 Device Support

13.1.1 Development Support

For the TPS22968 and TPS22968-Q1 PSpice Transient Model, see SLVMA29.

For the TPS22968N and TPS22968N-Q1 PSpice Transient Model, see SLVMBA9.

13.2 Documentation Support

13.2.1 Related Documentation

For related documentation see the following:

- Managing Inrush Current, SLVA670A
- Quiescent Current vs Shutdown Current for Load Switch Power Consumption, SLVA757
- TPS22968EVM-007 Dual 4A Load Switch, SLVUA30
- Load Switch Thermal Considerations, SLVUA74
- TPS22968/68N-Q1 Dual-Channel 5.5-V 4-A 27-mΩ Load Switch EVM User's Guide, SLVUAE2A
- TPS22968NEVM Dual 4 A Load Switch, SLVUAL0

13.3 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 4. Related Links

PARTS	PRODUCT FOLDER	DUCT FOLDER SAMPLE & BUY		TOOLS & SOFTWARE	SUPPORT & COMMUNITY	
TPS22968	Click here	Click here	Click here	Click here	Click here	
TPS22968N	Click here	Click here	Click here	Click here	Click here	

13.4 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

13.5 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

13.6 Trademarks

E2E is a trademark of Texas Instruments. Ultrabook is a trademark of Intel.

Copyright © 2014–2017, Texas Instruments Incorporated

13.7 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

13.8 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

12-Jun-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins		Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TPS22968DPUR	ACTIVE	WSON	DPU	14	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 105	RB968	Samples
TPS22968DPUT	ACTIVE	WSON	DPU	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 105	RB968	Samples
TPS22968NDPUR	ACTIVE	WSON	DPU	14	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 105	RB968N	Samples
TPS22968NDPUT	ACTIVE	WSON	DPU	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 105	RB968N	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

12-Jun-2017

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

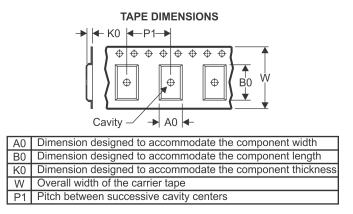
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS22968 :

• Automotive: TPS22968-Q1

NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

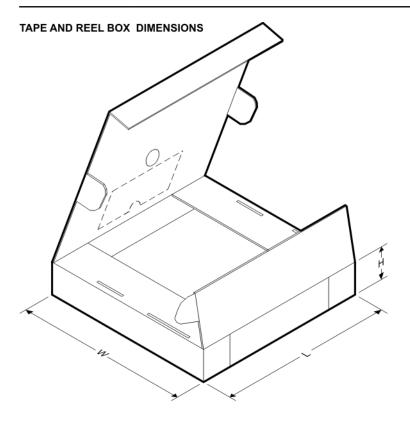

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

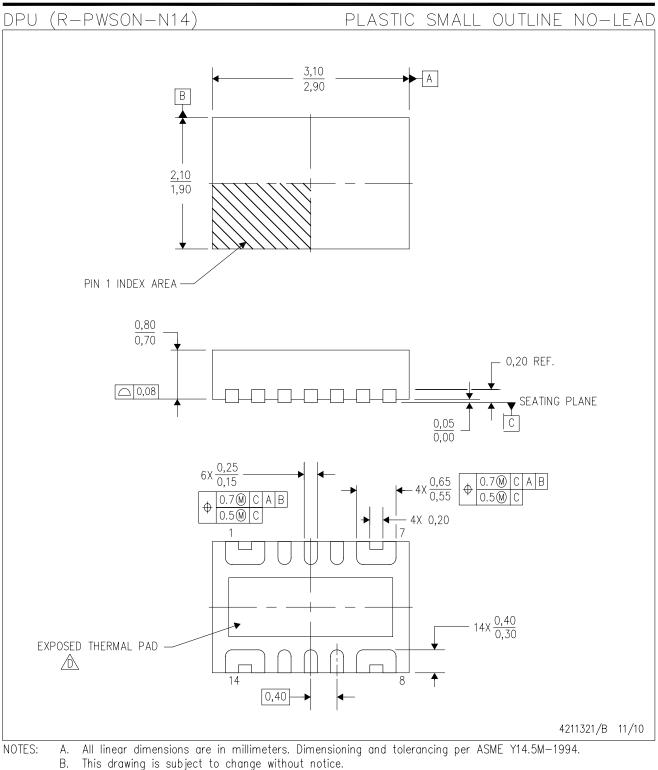
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS22968DPUR	WSON	DPU	14	3000	180.0	8.4	2.25	3.25	1.05	4.0	8.0	Q1
TPS22968DPUT	WSON	DPU	14	250	180.0	8.4	2.25	3.25	1.05	4.0	8.0	Q1
TPS22968NDPUR	WSON	DPU	14	3000	180.0	8.4	2.25	3.25	1.05	4.0	8.0	Q1
TPS22968NDPUT	WSON	DPU	14	250	180.0	8.4	2.25	3.25	1.05	4.0	8.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION


12-Jun-2017

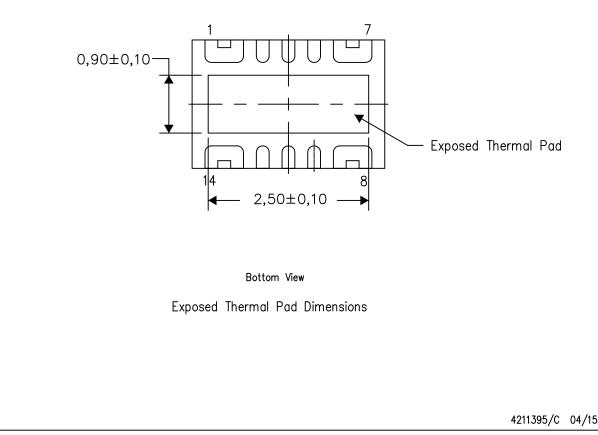
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS22968DPUR	WSON	DPU	14	3000	210.0	185.0	35.0
TPS22968DPUT	WSON	DPU	14	250	210.0	185.0	35.0
TPS22968NDPUR	WSON	DPU	14	3000	210.0	185.0	35.0
TPS22968NDPUT	WSON	DPU	14	250	210.0	185.0	35.0

MECHANICAL DATA

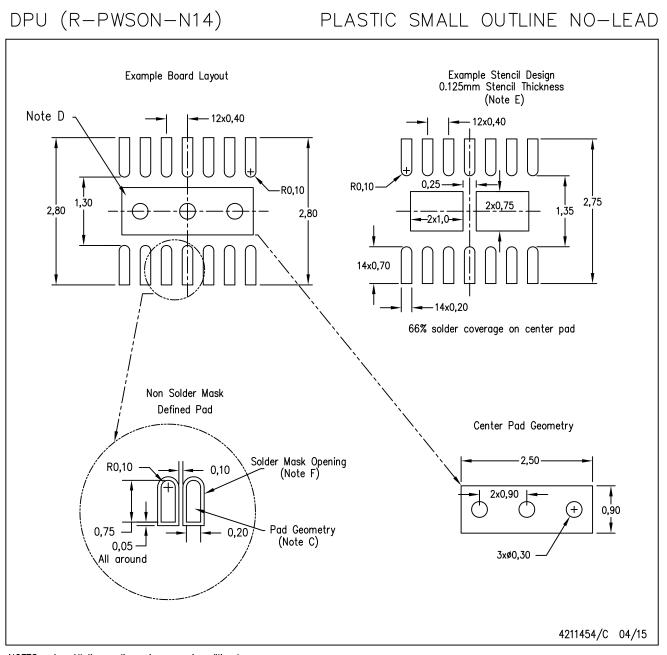
- Ç. Small Outline No-Lead (SON) package configuration.
- \triangle The package thermal pad must be soldered to the board for thermal and mechanical performance.
 - See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
- E. This package is Pb-free.

DPU (R-PWSON-N14)


PLASTIC SMALL OUTLINE NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).


For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>.
 - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
 - F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated