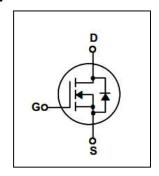
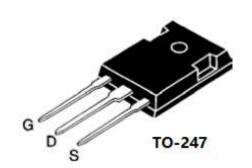
500V 30A N-Channel Planar MOSFET


General Description


RS30N50W is Fortunatus high voltage MOSFET family based on advanced planar stripe DMOS technology. This advanced MOSFET family has optimized on-state resistance, and also provides superior switching performance and higher avalanche energy strength. This device family is suitable for high efficiency switch mode power supplies.

FEATURES

- RDSON \leq 100m Ω @Vgs=10V, Id=15A
- Ultra Low gate Charge(typical 140 nC)
- Low Crss (typical 80pF)
- · Fast switching capability
- 100% avalanche tested
- · Improved dv/dt capability

SYMBOL

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise noted)

Paramete	Symbol	Rating	Unit	
Drain-Source Voltage	V _{DSS}	500	V	
Drain Current	Continuous (T _C = 25°C)		30	А
	Continuous (T _C = 100°C)	l _D	20	Α
Drain Current	Pulsed (Note1)	I _{DM}	120	Α
Gate-Source Voltage	V_{GSS}	±30	V	
Avalanche Energy	Single Pulse (Note2)	E _{AS}	3500	mJ
	Repetitive (None1)	E _{AR}	400	mJ
Avalanche Current (None1)	I _{AR}	30	Α	
Peak Diode Recovery dv/dt (Note3)		dv/dt	5	V/ns
Power Dissipation (Note 2)	T _C =25°C	В	360	W
	Derate above 25°C	P_{D}	3.2	W/°C
Maximum Junction Temperature	TJ	150	°C	
Storage Temperature Range		T _{STG}	-55 to 150	°C

Note: 1. Repetitive Rating: Pulse width limited by maximum junction temperature

2. L=10.15mH, I_{AS} =10.0A, V_{DD} =50V, RG=25 Ω, Starting TJ = 25°C

3. $I_{SD} \le 10.0 \text{A}$, di/dt $\le 300 \text{A}/\mu \text{s}$, $V_{DD} \le BV_{DSS}$, Starting TJ = 25°C

REASUNOS

THERMAL CHARACTERISTICS

Parameter	Symbol	Тур.	Max.	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$		0.31	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{ heta JA}$		38	°C/W

ELECTRICAL CHARACTERISTICS (T_J=25°C,unless otherwise Noted)

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit	
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage	BV _{DSS}	VGS=0V, ID=250µA	500			V	
Zero Gate Voltage Drain Current		VDS=500V, VGS=0V			1	uA	
	I _{DSS}	VDS=480V, TC = 125°C			100	uA	
Gate-Body Leakage Current, Forward	,	VGS=30V			100	nA	
Gate-Body Leakage Current, Reverse	I_{GSS}	VGS=-30V			-100	nA	
Breakdown Voltage Temperature	△BVDSS/	ID = 050 ·· A		0.65		V//°C	
Coefficient	∆TJ	ID = 250 μA		0.65		V/°C	
ON CHARACTERISTICS							
Gate Threshold Voltage	$V_{GS(TH)}$	VDS=VGS, ID=250µA	2		4	V	
Drain-Source On-State Resistance	R _{DS(ON)}	VGS=10V, ID=15A		82	100	mΩ	
Forward Transconductance (Note4)	g FS	VDS = 30V, ID =15A		20		S	
DYNAMIC PARAMETERS							
Input Capacitance	C _{ISS}	\/D0_05\/_\/00_0\/		8260		pF	
Output Capacitance	Coss	- VDS=25V, VGS=0V, - - f=1.0MHz -		730		pF	
Reverse Transfer Capacitance	C _{RSS}			80		pF	
SWITCHING PARAMETERS							
Turn-ON Delay Time	t _{D(ON)}	\/DD-250\/ ID-20A		68		ns	
Turn-ON Rise Time	t _R	VDD=250V, ID=30A, VGS = 10V ,RG=25Ω		120		ns	
Turn-OFF Delay Time	t _{D(OFF)}	(Note4,5)		485		ns	
Turn-OFF Fall-Time	t _F	(140164,3)		145		ns	
Total Gate Charge(Note)	Q_{G}	VDS =250V, VGS =10V,		140		nC	
Gate Source Charge	Q _{GS}	ID =30A		22		nC	
Gate Drain Charge	Q_{GD}	(Note4,5)		48		nC	
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS							
Drain-Source Diode Forward Voltage	V _{SD}	IS=30A, VGS=0V			1.4	V	
Diode Continuous Forward Current	I _S				30	Α	
Pulsed Drain-Source Current	I _{SM}				120	Α	
Reverse Recovery Time	t _{RR}	VGS = 0 V, ISD = 30A		485		ns	
Reverse Recovery Charge	Q_{RR}	di/dt=100 A/µs (Note4,5)		4.8		uC	

Note: 4. Pulse Test : Pulse width ≤ 300µs, Duty cycle ≤ 2%

^{5.} Essentially independent of operating temperature

TYPICAL CHARACTERISTICS

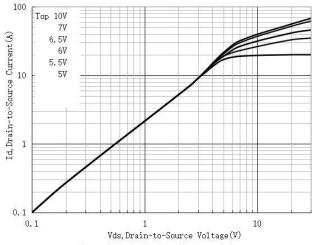


Figure 1. Typical Output Characteristics

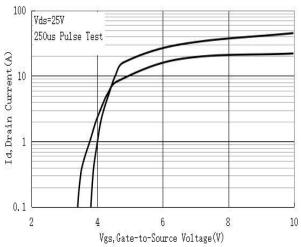


Figure 2. Typical Transfer Characteristics

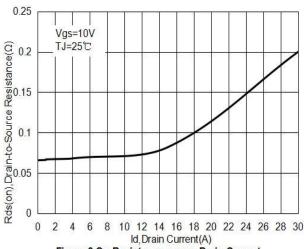


Figure 3.On-Resistance versus Drain Current

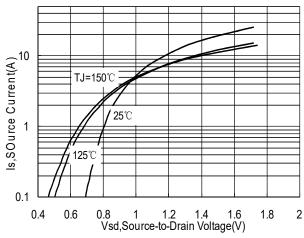


Figure 4.Diode Forward Voltage versus Current

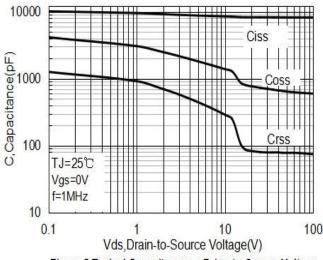


Figure 5.Typical Capacitance vs.Drian-to-Source Voltage

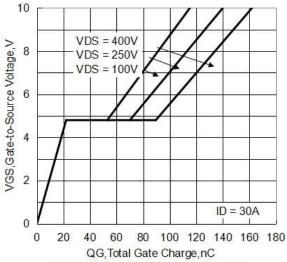


Figure 6. Typical Gate Charge vs. Vgs

TYPICAL CHARACTERISTICS(Cont.)

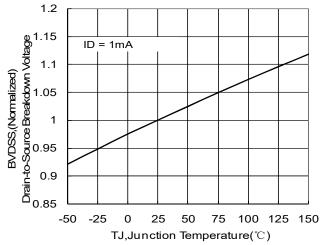


Figure 7.Bvdss Variation with Temperature

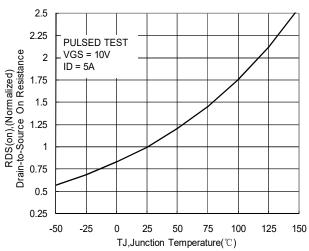
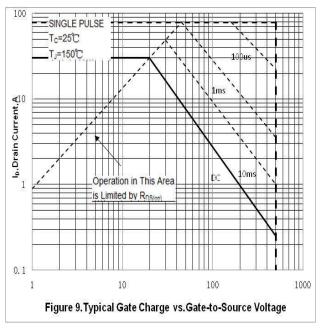
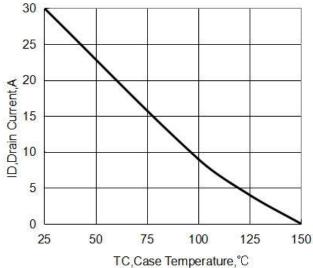
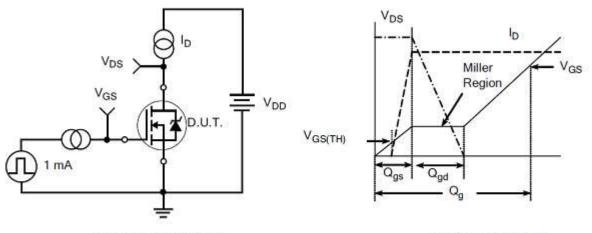
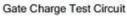
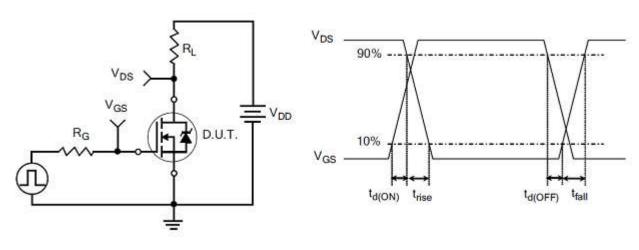
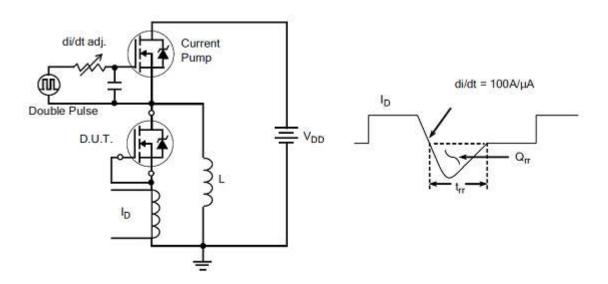



Figure 8.On-Resistance Variation with Temperature

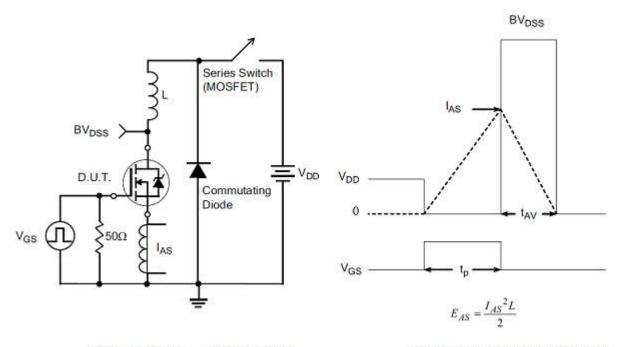





Figure 10. Maximum Continuous Drain Current vs Case Temperature

TEST CIRCUITS AND WAVEFORMS


Gate Charge Waveform

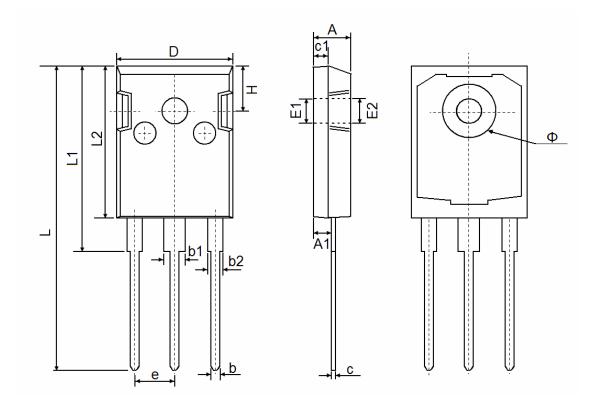
Resistive Switching Test Circuit


Resistive Switching Waveforms

TEST CIRCUITS AND WAVEFORMS(Cont.)

Diode Reverse Recovery Test Circuit

Diode Reverse Recovery Waveform



Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

REASUNOS

TO-247 Package Information

Symbol	Dimensions	In Millimeters	Dimension	s In Inches	
	Min.	Max.	Min.	Max.	
A	4.850	5.150	0.191	0.200	
A1	2.200	2.600	0.087	0.102	
b	1.000	1.400	0.039	0.055	
b1	2.800	3.200	0.110	0.126	
b2	1.800	2.200	0.071	0.087	
С	0.500	0.700	0.020	0.028	
c1	1.900	2.100	0.075	0.083	
D	15.450	15.750	0.608	0.620	
E1	3.500 REF		0.138 REF		
E2	3.600 REF		0.142 REF		
L	40.900	41.300	1.610	1.626	
L1	24.800	25.100	0.976	0.988	
L2	20.300	20.600	0.799	0.811	
Φ	7.100	7.300	0.280	0.287	
е	5.450 TYP		0.215 TYP		
Н	5.980 REF		0.235 REF		

REASUNOS

Disclaimers:

GuangDong Reasunos Semiconductor Technology CO.,LTD(Reasunos)reserves the right to make changes without notice in order to improve reliability,function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information in current and complete. All products are sold subject to Reasunos's terms and conditions supplied at the time of order acknowledgement.

GuangDong Reasunos Semiconductor Technology CO.,LTD warrants performance of its hardware products to the speciffications at the time of sale. Testing, reliability and quality control are used to the extene Reasunos deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.

GuangDong Reasunos Semiconductor Technology CO.,LTD does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using Reasunos's components. To minimize risk, customers must provide adequate design and operating safeguards.

GuangDong Reasunos Semiconductor Technology CO.,LTD does not warrant or convey any license either expressed or implied under its patent rights,nor the rights of others.Reproduction of information in Reasunos's data sheeets or data books is permissible only if reproduction is without modification oralteration.Reproduction of this information with any alteration is an unfair and deceptive business practice.GuangDong Reasunos Semiconductor Technology CO.,LTD is not responsible or liable for such altered documentation.

Resale of Reasunos's products with statements different from or beyond the parameters stated by GuangDong Reasunos Semiconductor Technology CO.,LTD for that product or service voids all express or implied warrantees for the associated Reasunos's product or service and is unfair and deceptive business practice.GuangDong Reasunos Semiconductor Technology CO.,LTD is not responsible or liable for such statements.

Life Support Policy:

GuangDong Reasunos Semiconductor Technology CO.,LTD's Products are not authorized for use as critical components in life support devices or systems without the expressed written approval of GuangDong Reasunos Semiconductor Technology CO.,LTD.

As used herein:

- 1.Life support devices or systems are devices or systems which:
- a.are intended for surgical implant into the human body,
- b.support or sustain life,
- c.whose failuer to when properly used in accordance with instructions for used provided in the laeling, can be reasonably expected to result in significant injury to the user.
- 2.A critical component is any component of a life support device or system whose failure to system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.