
VS-80EBU04

ROHS COMPLIANT

www.vishay.com

Vishay Semiconductors

Ultrafast Soft Recovery Diode, 80 A FRED Pt®

PRODUCT SUMMARY				
Package PowerTab [®]				
I _{F(AV)}	80 A			
V _R	400 V			
V _F at I _F	0.92 V			
t _{rr} (typ.)	See recovery table			
T _J max.	175 °C			
Diode variation	Single die			

FEATURES

- Ultrafast recovery time
- 175 °C max. operating junction temperature
- Screw mounting only
- \bullet Designed and qualified according to JEDEC $^{\textcircled{B}}\mbox{-}JESD$ 47
- PowerTab[®] package
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

BENEFITS

- Reduced RFI and EMI
- Higher frequency operation
- Reduced snubbing
- Reduced parts count

DESCRIPTION / APPLICATIONS

These diodes are optimized to reduce losses and EMI/RFI in high frequency power conditioning systems.

The softness of the recovery eliminates the need for a snubber in most applications. These devices are ideally suited for HF welding, power converters and other applications where switching losses are not significant portion of the total losses.

ABSOLUTE MAXIMUM RATINGS				
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS
Cathode to anode voltage	V _R		400	V
Continuous forward current	I _{F(AV)}	T _C = 101 °C	80	
Single pulse forward current	I _{FSM}	T _C = 25 °C	800	А
Maximum repetitive forward current	I _{FRM}	Square wave, 20 kHz	160	
Operating junction and storage temperatures	T _J , T _{Stg}		-55 to +175	°C

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS		TYP.	MAX.	UNITS
Breakdown voltage, blocking voltage	V _{BR} , V _r	I _R = 100 μA		-	-	
		I _F = 80 A	-	1.1	1.3	v
Forward voltage	V _F	I _F = 80 A, T _J = 175 °C	-	0.92	1.08	
		I _F = 80 A, T _J = 125 °C		0.98	1.15	
	I _B	$V_{R} = V_{R}$ rated	-	-	50	μA
Reverse leakage current	١R	$T_J = 150 \text{ °C}, V_R = V_R \text{ rated}$	-	-	2	mA
Junction capacitance	CT	V _R = 200 V		50	-	pF
Series inductance	L _S	Measured lead to lead 5 mm from package body - 3.5 -		nH		

Revision: 09-Jun-15

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

1

VS-80EBU04

www.vishay.com

Vishay Semiconductors

DYNAMIC RECOVERY CHARACTERISTICS ($T_J = 25$ °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
		$I_F = 1 \text{ A}, \text{ d}I_F/\text{d}t = 200 \text{ A}/1000 \text{ A}/10000 \text{ A}/1000 \text{ A}/10000 \text{ A}/1000 \text{ A}/10000 \text{ A}/100000\text{ A}/100000\text{ A}/100000\text{ A}/100000\text{ A}/100000\text{ A}/1000000\text{ A}/1000000\text{ A}/1000000\text{ A}/1000000000000000000000000000000000000$	= 1 A, dI _F /dt = 200 A/µs, V _R = 30 V		50	60	
Reverse recovery time t _{rr}	t _{rr}	T _J = 25 °C	I _F = 80 A V _R = 200 V dI _F /dt = 200 A/μs	-	87	-	ns
		T _J = 125 °C		-	151	-	
Peak recovery current	I _{RRM}	T _J = 25 °C		-	9.3	-	A
		T _J = 125 °C		-	17.2	-	
Reverse recovery charge	Q _{rr}	T _J = 25 °C		-	405	-	nC
		T _J = 125 °C		-	1300	-	

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Thermal resistance, junction to case	R _{thJC}		-	-	0.70	°C/W
Thermal resistance, junction to heatsink	R _{thCS}	Mounting surface, flat, smooth and greased	-	0.2	-	0/11
Weight			-	-	5.02	g
weight			-	0.18	-	oz.
Mounting torque			1.2 (10)	-	2.4 (20)	N · m (lbf · in)
Marking device		Case style PowerTab [®]		80EE	3U04	•

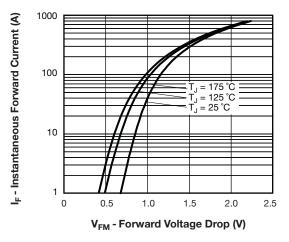
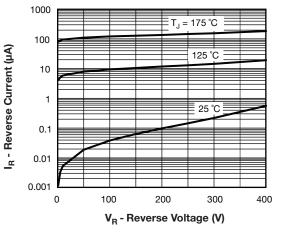
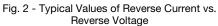




Fig. 1 - Maximum Forward Voltage Drop Characteristics

VS-80EBU04

Vishay Semiconductors

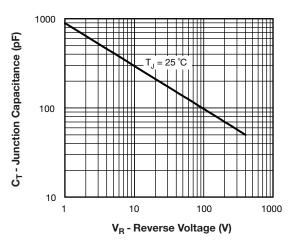


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

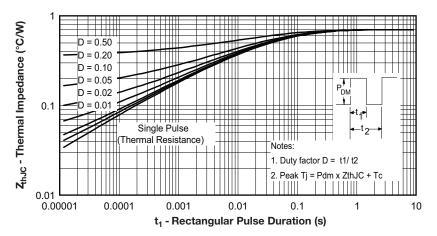
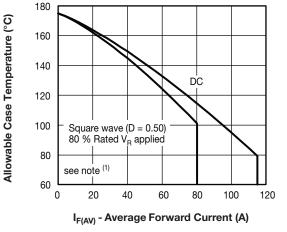
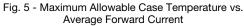
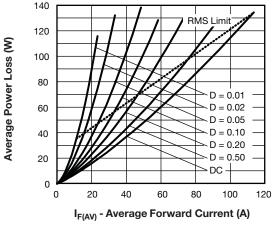
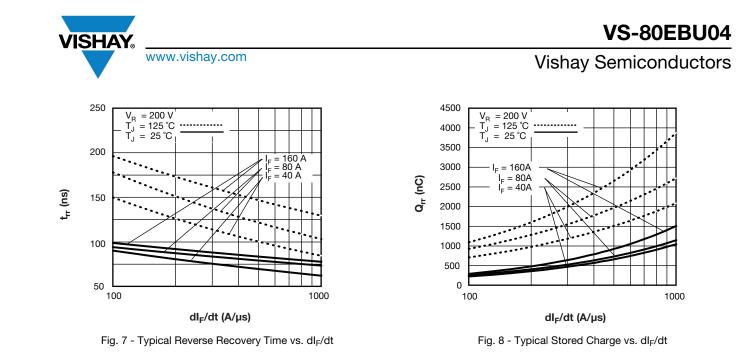




Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics




Fig. 6 - Forward Power Loss Characteristics

Revision: 09-Jun-15

3

Document Number: 93025

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;

Pd = Forward power loss = $I_{F(AV)} \times V_{FM}$ at ($I_{F(AV)}/D$) (see fig. 6); Pd_{REV} = Inverse power loss = $V_{R1} \times I_R$ (1 - D); I_R at V_{R1} = 80 % rated V_R

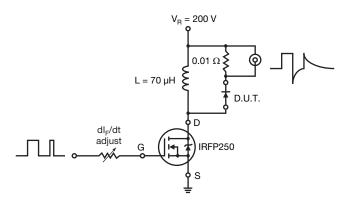


Fig. 9 - Reverse Recovery Parameter Test Circuit

Vishay Semiconductors

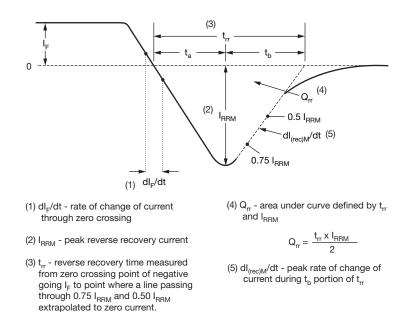
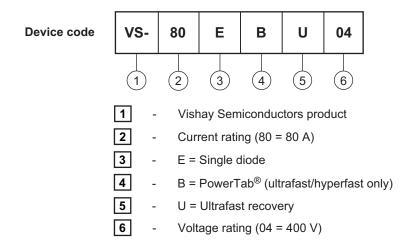
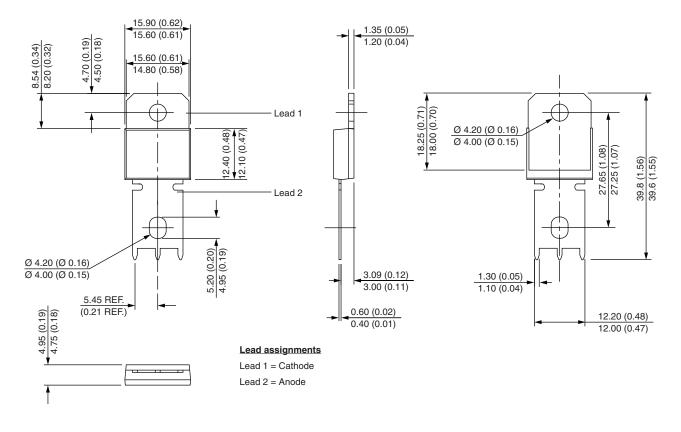



Fig. 10 - Reverse Recovery Waveform and Definitions

ORDERING INFORMATION TABLE

www.vishay.com

LINKS TO RELATED DOCUMENTS				
Dimensions www.vishay.com/doc?95240				
Part marking information	www.vishay.com/doc?95370			
Application note	www.vishay.com/doc?95179			


Revision: 09-Jun-15 Document Number: 93025 For technical questions within your region: DiodesAmericas@vishav.com, DiodesAsia@vishav.com, DiodesEurope@vishav.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Semiconductors

PowerTab[®]

DIMENSIONS in millimeters (inches)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.