CS3-SPM-S059

Pre.0

2019.1.29

Specification For **Approval**

- ■Preliminary specification
- □ Final specification

Title 1

Buyer	
Model	

Supplier	Cheng Du BOE Optoelectronics Technology CO., LTD			
Model	AV103Z7M-N10			

TITLE/SIGNATURE DATE	ITEM SIGNATURE/DATE
	Approved
	Reviewed
	Reviewed
	Prepared
Please return one copy confirmation with signature and your comments Pag	BOE CHENG DU

Pre.0

CS3-SPM-S059

2019.1.29

CONTENT LIST

_		
Conte	nt List	2
Record	d of Revisions	3
1. GE	ENERAL DESCRIPTIONS	4
2. ME	ECHANICAL SPECIFICATIONS	4
3. IN	TERFACE SIGNALS	6
4. AE	SSOLUTE MAXIMUM RATINGS	8
5. EL	ECTRICAL SPECIFICATIONS	9
5.1 BL	OCK DIAGRAM	9
5.2 TY	PICAL ELECTRICAL CHARACTERISTICS	10
5.3 RE	ECOMMENDED DRIVING CONDITION FOR LED BACKLIGHT	11
5.4 TI	MING CHARACTERISTICS	12
5.4.1	LVDS AC electrical characteristics	12
5.4.2	LVDS Input Format	14
5.4.3	Video Signal Timing	15
5.4.4	SPI interface (3 wires)	16
5.4.5	SPI interface timing chart	17
5.5 PC	OWER ON/OFF SEQUENCE	17
5.6 TH	HERMISTORS RESISTANCE	18
6. OF	PTICAL CHARACTERISTICS	19
7. RE	ELIABILITY TESTS / ENVIRONMENTAL	22
7.1 RE	ELIABILITY TEST CONDITIONS	22
7.2 EL	ECTROSTATIC DISCHARGE (ESD)	23
8. PA	ACKING REMOVAL AND HANDLING REQUIREMENT	27
9. DE	EFINITIONS	28
10. LII	FE SUPPORT APPLICATIONS	28
11. AF	PPENDIX	28
11. / \(\)	LINDIA	20

CS3-SPM-S059

Pre.0

2019.1.29

	Record of Revisions					
Revision	Date	Page	Description	Released by		
Pre.0	2019.1.29		Initial Released	Jiao Fang		

AV103Z7M-N10 Module Product Specification

CS3-SPM-S059

Pre.0

2019.1.29

1.0 GENERAL DESCRIPTION

1.1 Introduction

AV103Z7M-N10 is a color active matrix TFT-LCD Panel using amorphous silicon TFT's (Thin Film Transistors) as an active switching devices. This model is composed of a TFT-LCD Panel, a driving circuit and a back light system. It is a transmissive type display operating in the normal white. This TFT-LCD has a 10.25 inch diagonally measured active area with WVGA resolutions (1920 horizontal by 720 vertical pixel array). Each pixel is divided into Red, Green, Blue dots which are arranged in vertical stripe and this panel can display 16.7M colors.

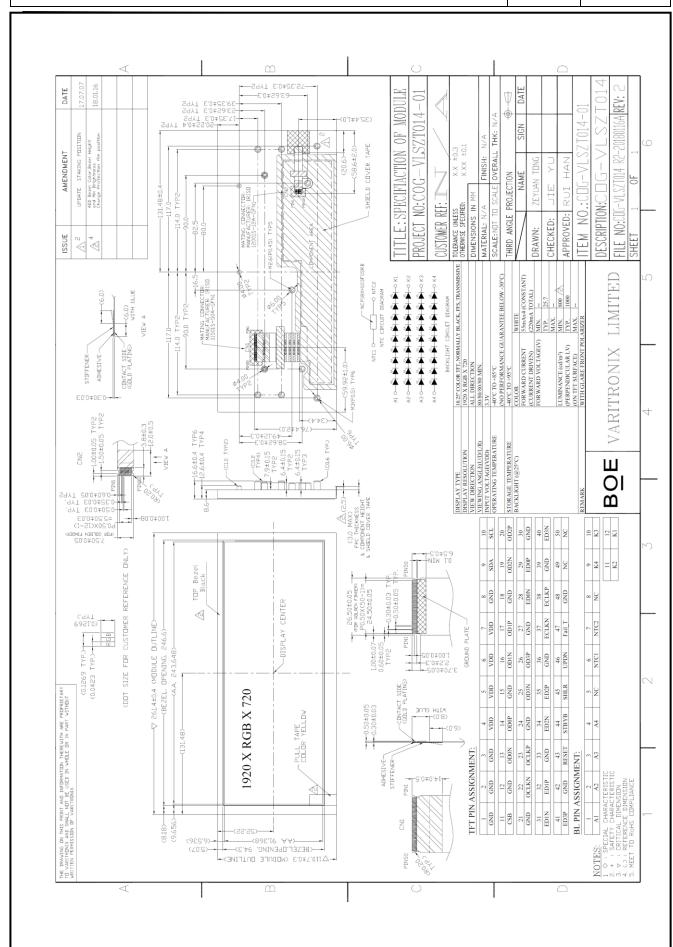
1.2 Features

- 10.25" (diagonal), 8:3, landscape, normally black, ADS, transmissive, amorphous silicon TFT LCD module
 - Display Resolution: 1920 x RGB x 720
 - Wide viewing angle (U/D/L/R): 85/85/85
 - Display up to 16.7M colours
 - 24-bit dual port LVDS interface (with T-CON)
 - HC front polarizer
 - White LED backlight
 - NTC Thermistor included
 - **RoHS Compliance**

CS3-SPM-S059

Pre.0

2019.1.29


1.3 General Specifications (H: horizontal length, V: vertical length)

Para	meters	Specifications	
Outline dimensions	Width x Height	261.4(W) x 110.7(H) x 8.6(T)	mm
	Bezel opening	246.6 (W) x 94.3 (H)	mm
	Active area	243.648(W) x 91.368(H)	mm
Color TFT	Display format	1920 x RGB x 720	
1920 x RGB x 720	Color configuration	RGB Vertical stripes	-
	Dot pitch	(0.0423*3) (W) x 0.1269 (H)	mm
Backlight		LED	-
Weight		Approx.:~360g	g

CS3-SPM-S059

Pre.0

2019.1.29

AV103Z7M-N10 Module Product Specification

CS3-SPM-S059

Pre.0

2019.1.29

2.0 ELECTRICAL SPECIFICATION

2.1 The product or its functions may subject to permanent damage if it's stressed beyond those absolute maximum ratings listed below. Exposure to absolute maximum rating conditions for extended periods may affect display module reliability.

Table 3: Absolute Maximum Ratings & Environmental Conditions

Item	Symbol	Min.	Max.	Unit
Digital supply voltage	VDD	-0.3	+3.96	V
Digital I/O input signals	Vio	-0.3	VDD+0.3	V
Single LED forward current	IF	-	150	mA
Total LED forward current	I _F (Total)	-	600	mA
Relative Humidity (at 60°C, Note 3)	RH		90	%
Operating Temperature (Note 2)	Topr	-40	+85	°C
Storage Temperature(Note 2)	Tstg	-40	+95	°C

Note 1: GND=VSS=0V.

Note 2: After the reliability test, the product only guarantee function normally without any fatal defect (non-display, line defect, abormal display etc).

Note 3: No condensation allowed under any condition.

[Caution]

Do not display fixed pattern for prolonged hours because it may develop image sticking on the display.

2.2 TFT LCD Module DC Characteristics-Typical Electrical Characteristics

At Ta = 25 °C, VDD=3.3V, GND=0V

Table 4

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage f	VDD	3.0	3.3	3.6	V
Power supply current for DCDC	IVDDA (Note 2)	-	240	450	mA
Power supply current for Logic	IDD (Note 2)	-	40	60	mA
Driver input high signal voltage	VIH	0.7*VCC	-	VCC	V
Driver input low signal voltage	VIL	GND		0.3*VCC	
LED Life Time (50%)	(Note 3)	30000	-	-	hrs

Note 1: There is tolerance in optimum LCD driving voltage during production and it will be within the specified range.

Note 2: All white pattern.

Note 3: The "LED Life Time" is defined as the time period when the brightness decrease to 50% of the initial value under continuous lighting at 25°C (dry condition) with the recommended driving current

Table 5:LVDS DC Characteristics

CS3-SPM-S059

Pre.0

2019.1.29

Parameter	Symbol	Min.	Тур.	Max.	Unit
Differential input high	V			+0.1	V
Threshold voltage	$V_{ m th}$	-	-	+0.1	v
Differential input low	V	0.1		0	V
threshold voltage	$V_{\rm tl}$	-0.1	-	0	·
Differential input common	VCM	1	1.2	1.7 37 - 1/2	V
Mode voltage	V CIVI	1	1.2	1.7- VID /2	·
LVDS input voltage	V _{INLV}	0.7		1.7	V
Differential input voltage	Vid	0.1		0.6	V
Differential input leakage	llvleak	-10		+10	4
Current	iivieak	-10	-	+10	uA

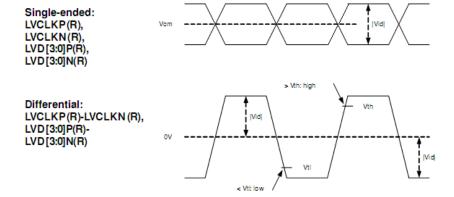


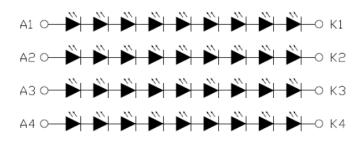
Figure 3

2.3 Backlight Driving Conditions

Table 6

 $(Ta = 25 \, ^{\circ}C)$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Supply voltage of	V	Backlight current = 220 mA	23.6	25.8	29.7	V	Note 1
LED backlight	V_{LED}	Number of LED dies = 36 pcs	23.0	23.6	29.1	V	Note 1
Supply current of	T	Per LED string		55	60	mA	Note 2
LED backlight	I LED1/4	Fer LED string	i	33	00	IIIA	Note 2
Total Supply							
current of LED	I LEDTotal	$I_{LED1} + + I_{LED4}$	-	220	240	mA	Note 2
backlight							
Backlight Power	D			5.7	7.1	W	N-4- 2
Consumption	P_{LED}	-	-	5.7	7.1	W	Note 3

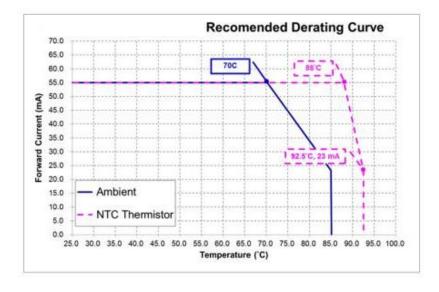

Backlight Circuit Diagram, the minimum meet the threshold voltage

AV103Z7M-N10 Module Product Specification

CS3-SPM-S059

Pre.0

2019.1.29


BACKLIGHT CIRCUIT DIAGRAM

The LED driving condition is defined for each LED and applied to this module only. Total input current = $55 \times 4 = 220 \text{ mA}$

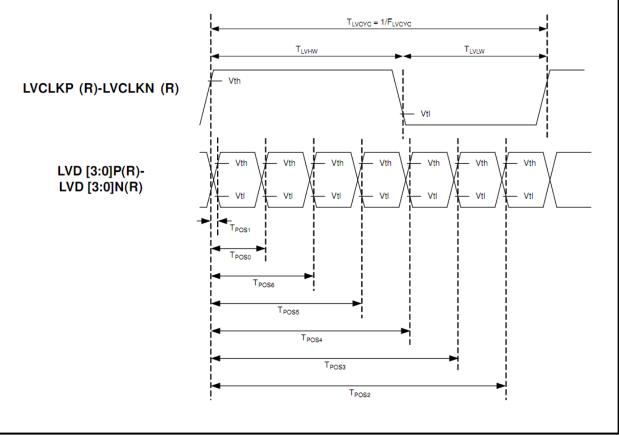
Backlight power consumption is calculated by I_{LED} (Total) x V_{LED}

Note 4: Backlight driving current best at 220mA (for total) /55mA (Per LED string)or below, and Should not significantly exceed 220mA (for total)/55mA (Per LED string)at all temperature; Otherwise, overheating may happen and may damage the backlight.

Backlight Driving Derating Curve

2.5 Power ON/OFF Sequence

CS3-SPM-S059


Pre.0

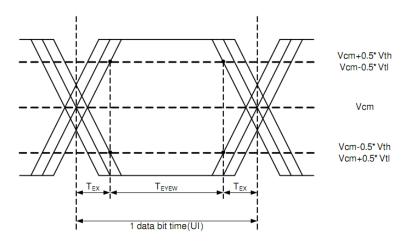
2019.1.29

1.1.1 LVDS AC electrical characteristics

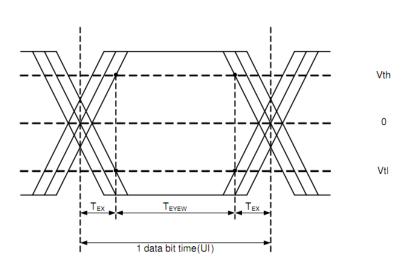
Table 7: AC Characteristic of LVDS

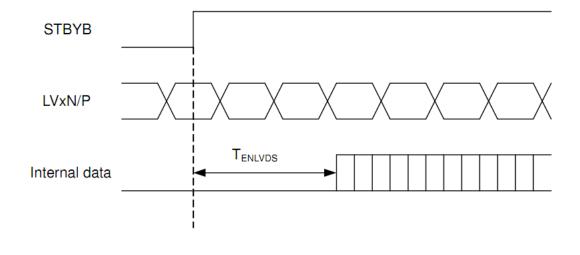
Parameter	Symbol	Min.	Тур.	Max.	Unit
Clock frequency	Flycyc	20	-	85	MHz
Clock period	Tlvcyc	11.76			ns
1 data bit time	UI		1/7		Tlvcyc
Clock high time	TLVCH		4		UI
Clock low time	TLVCL		3		UI
Position 1	T _{POS1}	-0.2	0	0.2	UI
Position 0	T _{POS0}	0.8	1	1.2	UI
Position 6	T _{POS6}	1.8	2	2.2	UI
Position 5	T _{POS5}	2.8	3	3.2	UI
Position 4	T _{POS4}	3.8	4	4.2	UI
Position 3	T _{POS3}	4.8	5	5.2	UI
Position 2	T _{POS2}	5.8	6	6.2	UI
Input eye width	Teyew	0.6	-	-	UI
Input eye border	Tex	-	-	0.2	UI
LVDS wake up time	Tenlvds	-	-	150	us

Page 10 of 28


AV103Z7M-N10 Module Product Specification

CS3-SPM-S059


Pre.0


2019.1.29

Single-ended: LVD [3:0]P, LVD [3:0]N

Differential: LVD[3:0]P-LVD[3:0]N

AV103Z7M-N10 Module Product Specification

CS3-SPM-S059

Pre.0

2019.1.29

1.1.1 LVDS Input Format

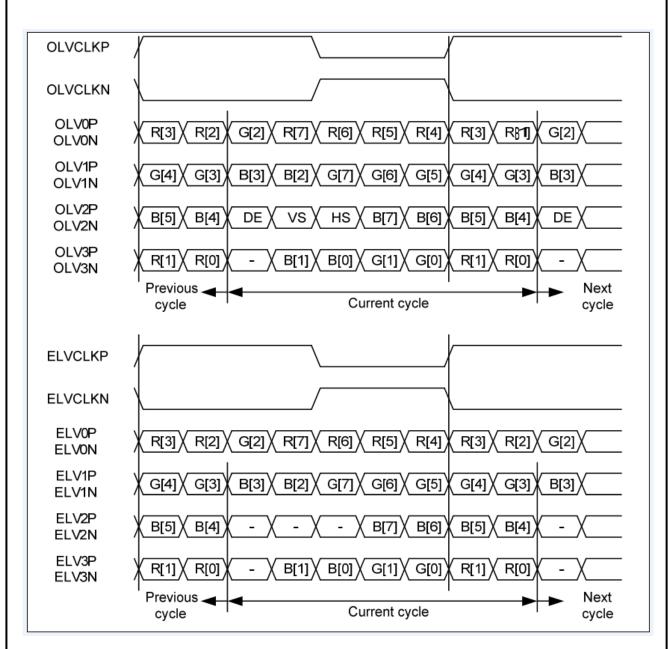
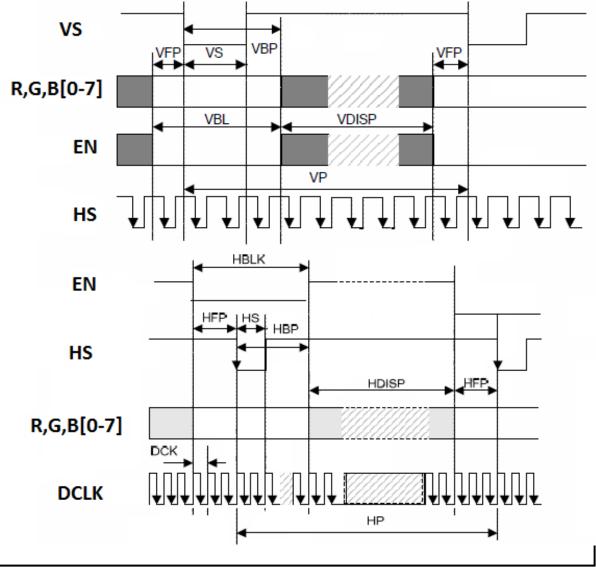


Figure 4: 2-port LVDS signals, JEIDA format, 8-bit mode

Notes: Using DE mode for Sync signal.

CS3-SPM-S059


Pre.0

2019.1.29

1.1.2 Video Signal Timing

Table 8: Video signal timing

Symbol	Parameter	Related Pins	Min.	Тур.	Max.	Unit
VP	Vertical Total	VSYNC	727	733	740	Line
VS	VSYNC Low Pulse Width	VSYNC	1	3	20	Line
VBP	Vertical Back Porch	VSYNC	2	5	255	Line
VFP	Vertical Front Porch	VSYNC	5	8	260	Line
VDISP	Vertical Active Area	VSYNC, HSYNC	-	720	-	Line
HP	Horizontal Total	HSYNC	989	1002	1152	
HS	HSYNC Low Pulse Width	HSYNC	10	12	255	DCK
HBP	Horizontal Back Porch	HSYNC	5	16	255	DCK
HFP	Horizontal Front Porch	HSYNC	24	26	260	DCK
HDISP	Horizontal Active Area	HSYNC	-	960	-	DCK
Fframe	Frame Frequency	CLK	-	60	-	Hz
fclk	CLK frequency	CLK	43.1	44.1	51.1	MHz

Page 13 of 28

Pre.0

CS3-SPM-S059

2019.1.29

1.1.3 SPI interface (3 wires)

SPI interface is used to read and write the setting registers of the TFT module and read commands to control the TFT module. Refer to Appendix is for details of the registers setting.

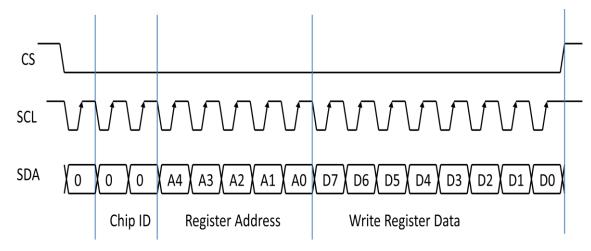


Figure 5: SPI write data format

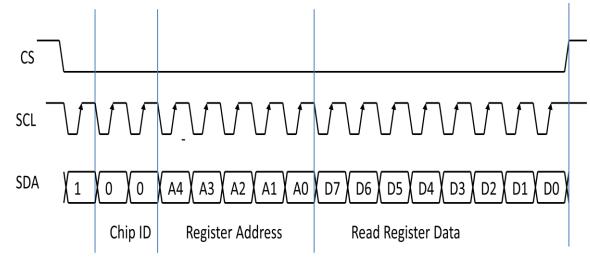


Figure 6: SPI read data format

CS3-SPM-S059

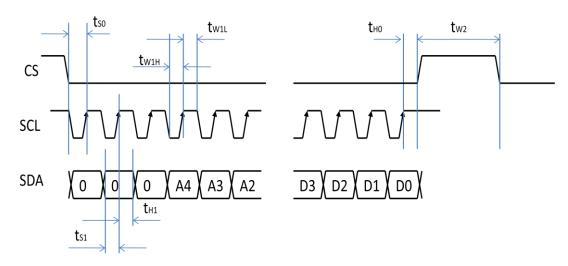
Pre.0

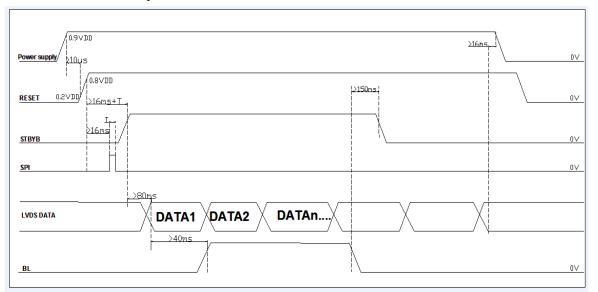
2019.1.29

1.1.4 SPI interface timing chart

Table 9: AC Characteristic of SPI Interface

Parameter	Symbol Conditions		Min.	Тур.	Max.	Unit
Satur Time	tso	CS to SCL	60	-	-	
Setup Time	ts1	SDA to SCL	60	-	-	ns
Hald Time	t H0	CS to SCL	60	-	-	
Hold Time	t H1	SDA to SCL	60	-	-	ns
	twil	SCL Negative cycle	75	-	-	ma
Pulse Width	tw1H	SCL Positive cycle	75			ns
	tw2	CS	1			us
Clock duty		SCL	40	50	60	%




Figure 7: SPI timing

CS3-SPM-S059

Pre.0

2019.1.29

1.2 Power On/Off Sequence

1.3 Thermistors Resistance

NCP1	8XH1	103F	FOSRB
1101 1	OMI	I O O I	OUILD

TEMP.		R-center (k ohm)	R-high (k ohm)
-40	188.0202	195.6520	203.5731
-35	142.7877	148.1710	153.7418
-30	109.5221	113.3471	117.2940
-25	84.8227	87.5588	90.3741
-20	66.2694	68.2367	70.2554
-15	52.2283	53.6496	55.1040
-10	41.4765	42.5062	43.5570
-5	33.1462	33.8922	34.6515
0	26.6780	27.2186	27.7675
5	21.6294	22.0211	22.4175

DOE	BOECD Optoelectronics Technology CO., LTD
ROF.	AV103Z7M-N10 Module Product Specification

CS3-SPM-S059
Pre.0 2019.1.29

10	17.6430	17.9255	18.2107
15	14.4712	14.6735	14.8772
20	11.9371	12.0805	12.2244
25	9.9000	10.0000	10.1000
30	8.2162	8.3145	8.4132
35	6.8534	6.9479	7.0430
40	5.7443	5.8336	5.9238
45	4.8333	4.9169	5.0015
50	4.0833	4.1609	4.2395
55	3.4634	3.5350	3.6076
60	2.9486	3.0143	3.0812
65	2.5259	2.5861	2.6476
70	2.1724	2.2275	2.2839
75	1.8741	1.9245	1.9761
80	1.6225	1.6685	1.7157
85	1.4101	1.4521	1.4952

2. Optical Characteristics

Conditions unless specified otherwise:

- Ta = 25 ℃
- Supply voltage = 3.3 volts
- Elapsed time from switch on is greater than 30 minutes
- RGB, white and black test patterns only
- Factory settings

CS3-SPM-S059

Pre.0

2019.1.29

- Brightness = 100% unless specified
- Measurements are conducted at ambient temperature and perpendicular unless specified

Table 10

Ite	ems	Symbol	Cond	ition	Min.	Тур.	Max.	Unit	Note
Response 7	Гіте	T_R + T_F	Ta = 25 ℃	Viewing normal angle $\theta=\phi=0^{\circ}$	-	30	40	ms	(Note 1)
Viewing	12'/ 6'	θ2, θ1	To-25 %	CR≥10	80	88	-	dag	
Angle (Centre)	9', 3'	φ2, φ1	Ta=25 °C	CR≥10	80	88	-	deg.	(Note 2)
Contrast R	atio	CR	Ta=25 ℃		800	1000	-	-	(Note 3)
	*****	XW			0.26	0.30	0.34	-	
	White	yw			0.30	0.34	0.38	-	
	Red	XR		Viewing	0.62	0.66	0.70	-	
Chromati	Red	УR		normal	0.28	0.32	0.36	-	(Note 4)
city	Green	XG	Ta=25 ℃	angle $\theta = \phi = 0$ °	0.25	0.29	0.33	-	(14016 4)
	Green	УG		θ-ψ-υ	0.61	0.65	0.69	-	
	Blue X _B	Nhua X _B		0.11	0.15	0.19	-		
	Diuc	Ув			0.05	0.09	0.13	-	
Brightness		L			800	1000	-	cd/m2	
Luminance Uniformity		ΔΥ9	Ta=25 ℃	9 Points	75	80		%	(Note 5)
NTSC Rat	io	-	Ta=25 ℃	-	70	75			%

Note 1: The electro-optical response time measurements shall be made as Figure 8 by switching the "data" input signal OFF and ON. The times needed for the luminance to change from 10% to 90% s T_r , and 90% to 10% is T_f .

CS3-SPM-S059

Pre.0

2019.1.29

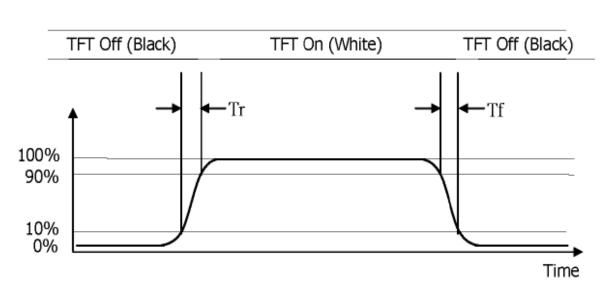


Figure 8: Response Time Testing

Note 2: The definitions of viewing angle.

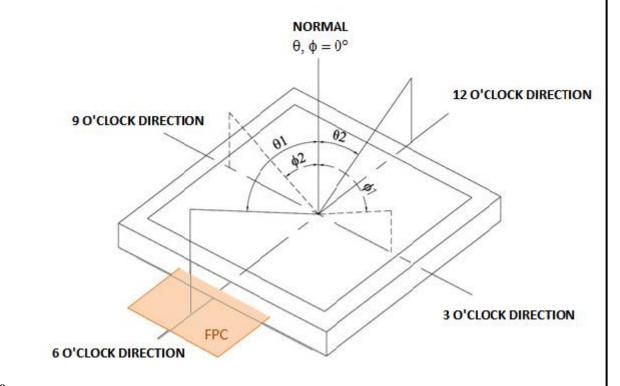


Figure 9

AV103Z7M-N10 Module Product Specification

CS3-SPM-S059

Pre.0

2019.1.29

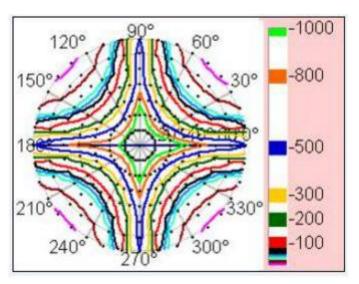


Figure 10: ISO-Contrast Plot (for reference) (Ta=25)

Note 3: Contrast measurements shall be made at viewing angle of θ =0° and at the center of the LCD surface by using DMS. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state. (See Figure 9)

Luminace Contrast Ratio (CR) is defined mathematically.

Note 4: The color chromaticity coordinates specified in Table 10 shall be updated from later actual spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.

Note 5: The White luminance uniformity on LCD surface is measured per VESA standard over 9 points and is then expressed as

Uniformity
$$\Delta Y = \frac{\text{Minimum Luminance of 9 points}}{\text{Maximum Luminance of 9 points}} \times 100 (\%)$$

AV103Z7M-N10 Module Product Specification

CS3-SPM-S059

Pre.0

2019.1.29

Reliability Tests / Environmental 3.

3.1 **Reliability Test Conditions**

Table 11: List of Reliability Tests

	Test	Symbol	Condition	Sample Qty.	Remark
1	High Temperature Storage	HST	+95 ℃ / 500 hrs	4pcs	
2	Low Temperature Storage	LST	-40 ℃ / 500 hrs	4pcs	
3	High Temperature Operating (Note)	НОТ	+85 ℃ / 500 hrs	4pcs	
4	Low Temperature Operating	LOT	-40 ℃ / 500 hrs	4pcs	
5	Accelerated Humidity Test Operating	АНТО	+60 °C / 90% RH / 500 hrs	4pcs	
6	Temperature Shock Test	TST	-30 ℃ <> +80 ℃, 30min/5min/30min,100cycles Non-Operating	4pcs	
7	UV exposure resistance	UV	1KW Xenon / 100 hrs Power off.	2pcs	
8	Mechanical Shock	-	3 directions: X,Y,Z axes Repeats:6 Peak acc.:100 G Pulse duration: 6 ms (half sine wave) Non-Operating	2pcs	Note 2
9	Mechanical Vibration	-	3 directions: X,Y,Z axes Sweep time: 1Oct/ min for 10 cycles Frequency: 10 -> 150->10 Hz per cycle 10-58 Hz: constant amplitude 0.75mm peak. 58-150Hz: constant acceleration 10g peak Sinusoidal, Non-Operating		Note 2
10	Image sticking	_	60°C/1hrs	4pcs	Note 3

Note 1: After the reliability test, the product only guarantee function normally without any fatal defect (non-display, line defect, abormal display etc).

Note 2: For module internal structure robustness test purpose only. Customer application CID

CS3-SPM-S059

Pre.0

2019.1.29

design should take care of overall mounting robustness with display module.

Note 3: Power on the LCD 1 hour @60°C at tessellated picture(5*5 Chess pattern), then switch to 127 gray picture, Invisible after 5 minutes

3.2 Electrostatic Discharge (ESD)

Table 12: ESD Test Conditions

Test	Condition	Method	Sample Qty.	Remark
Human body model	$R = 330\Omega, C = 150pF,$	IEC61000-4-2	2pcs	Not
	• Air discharge: ± 15 KV to			operatin
	display surface			g
	• Contact discharge: ± 8 KV to			
	metal frame			
Machine model	$R = 0\Omega$, $C = 200pF$,	MIL-STD-883, method	2pcs	Not
	±200V to I/O pins	3015		operatin
				g

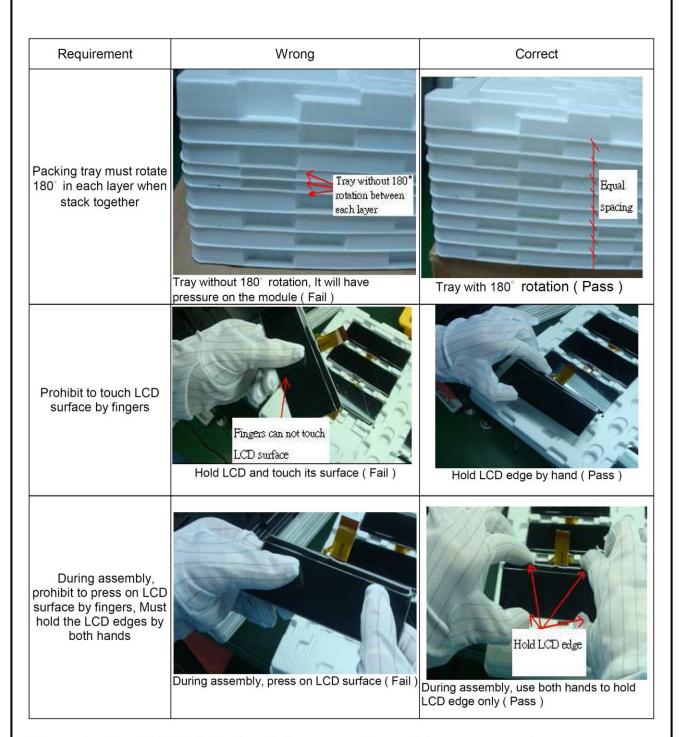
- Note 1: The TFT-LCD panel and IC on module are sensitive to electrostatic discharge; please make sure equipments and operators are properly ground before and during handling
- Note 2: As different customer application have different interfacing designs and assembly processes, the display module has no ESD protection circuitry. Customer is required to take special care on ESD level control in the assembly and test processes.

CS3-SPM-S059

Pre.0

2019.1.29

Packing removal and handling requirement



AV103Z7M-N10 Module Product Specification

CS3-SPM-S059

Pre.0

2019.1.29

Remark: For all ISTN display, it is extremely sensitive to external pressure, beside above handling requirement, special care to avoid pressure application on LCD surface is necessary.

Definitions 5.

CS3-SPM-S059

Pre.0

2019.1.29

Objective	This data sheet contains target or goal specifications for product development.
Specification	
Preliminary	This data sheet contains preliminary data; supplementary data may be published
Specification	later.
Product	This data sheet contains final product specification.
Specification	

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating. Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operating of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Expose to limiting values for extended periods may affect device reliability.

Device is functional within the limiting conditions doesn't imply the same performance over the covered conditions, customer is required to decide the best range for the final applications.

6. Life Support Applications

These products are not designed for use in life saving appliances, devices or systems where malfunctioning of these products can reasonably be expected to result in personal injury. Customers using or selling these products for use in such applications do so at their own risk and agree full non liability of Varitronix Limited for any damages or losses resulting from such improper use or sale.

AV103Z7M-N10 Module Product Specification

CS3-SPM-S059

Pre.0

2019.1.29

10.0 HANDDLING & CAUTIONS

10.1 Mounting Method

- The panel of the LCM consists of two thin glasses with polarizer which easily get damaged. So extreme care should be taken when handling the LCM.
- Excessive stress or pressure on the glass of the LCM should be avoided. Care must be taken to insure that no torsional or compressive forces are applied to the LCM unit when it is mounted.
- If the customer's set presses the main parts of the LCM, the LCM may show the abnormal display. But this phenomenon does not mean the malfunction of the LCM and should be pressed by the way of mutual agreement.
- To determine the optimum mounting angle, refer to the viewing angle range in the specification for each model.
- Mount a LCM with the specified mounting parts.

10.2 Caution of LCM Handling and Cleaning

- Since the LCM is made of glass, do not apply strong mechanical impact or static load onto it. Handling with care since shock, vibration, and careless handling may seriously affect the product. If it falls from a high place or receives a strong shock, the glass maybe broken.
- The polarizer on the surface of panel are made from organic substances. Be very careful for chemicals not to touch the polarizer or it leads the polarizer to be deteriorated.
- If the use of a chemical is unavoidable, use soft cloth with solvent recommended below to clean the LCM's surface with wipe lightly.
- -IPA (Isopropyl Alcohol), Ethyl Alcohol, Tri-chloro, tri-florothane.
- Do not wipe the LCM's surface with dry or hard materials that will damage the polarizer and others. Do not use the following solvent—Water, acetone, Aromatics.
- It is recommended that the LCM be handled with soft gloves during assembly, etc. The polarizer on the LCM's surface are vulnerable to scratch and thus to be damaged by shape particles.
- Do not drop water or any chemicals onto the LCM's surface.
- A protective film is supplied on the LCM and should be left in place until the LCM is required for operation.
- The ITO pad area needs special careful caution because it could be easily corroded. Do not contact the ITO pad area with HCFC, Soldering flux, Chlorine, Sulfur, saliva or fingerprint. To prevent from the ITO corrosion, customers are recommended that the ITO area would be covered by UV or silicon.
- Please handle FPC with care.

AV103Z7M-N10 Module Product Specification

CS3-SPM-S059

Pre.0

2019.1.29

10.3 Caution Against Static Charge

- The LCM use C-MOS LSI drivers, so customers are recommended that any unused input terminal would be connected to Vdd or Vss, do not input any signals before power is turn on, and ground you body, work/assembly area, assembly equipments to protect against static electricity.
- Remove the protective film slowly, keeping the removing direction approximate 30-degree not vertical from panel surface, if possible, under ESD control device like ion blower, and the humidity of working room should be kept over 50%RH to reduce the risk of static charge.
- Avoid the use work clothing made of synthetic fibers. We recommend cotton clothing or other conductivity-treated fibers.
- In handling the LCM, wear non-charged material gloves. And the conducting wrist to the earth and the conducting shoes to the earth are necessary.

10.4 Caution For Operation

- It is indispensable to drive the LCM within the specified voltage limit since the higher voltage than the limit causes LCM's life shorter. An electro-chemical reaction due to DC causes undesirable deterioration of the LCM so that the use of DC drive should avoid.
- Do not connect or disconnect the LCM to or from the system when power is on.
- Never use the LCM under abnormal conditions of high temperature and high humidity.
- When expose to drastic fluctuation of temperature(hot to cold or cold to hot), the LCM may be affected; specifically, drastic temperature fluctuation from cold to hot, produces dew on the LCM's surface which may affect the operation of the polarizer on the LCM.
- Response time will be extremely delay at lower temperature than the operating temperature range and on the other hand LCM may turn black at temperature above its operational range. However those phenomenon do not mean malfunction or out of order with the LCM. The LCM will revert to normal operation once the temperature returns to the recommended temperature range for normal operation.
- Do not display the fixed pattern for a long time because it may develop image sticking due to the LCM structure. If the screen is displayed with fixed pattern, use a screen saver.
- Do not disassemble and/or re-assemble LCM module

10.5 Packaging

- Modules use LCM element, and must be treated as such.
- -Avoid intense shock and falls from a height.
- -To prevent modules from degradation, do not operate or store them exposed directly to sunshine or high temperature/humidity for long periods.

AV103Z7M-N10 Module Product Specification

CS3-SPM-S059

Pre.0

2019.1.29

10.6 Storage

- A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit. Relative humidity of the environment should therefore be kept below 60%RH.
- Original protective film should be used on LCM's surface (polarizer). Adhesive type protective film should be avoided, because it may change color and/or properties of the polarizer.
- Do not store the LCM near organic solvents or corrosive gasses.
- Keep the LCM safe from vibration, shock and pressure.
- Black or white air-bubbles may be produced if the LCM is stored for long time in the lower temperature or mechanical shocks are applied onto the LCM.
- In the case of storing for a long period of time for the purpose or replacement use, the following ways are recommended.
- -Store in a polyethylene bag with sealed so as not to enter fresh air outside in it.
- -Store in a dark place where neither exposure to direct sunlight nor light is.
- -Keep temperature in the specified storage temperature range.
- -Store with no touch on polarizer surface by the anything else. If possible, store the LCM in the packaging situation when it was delivered.

10.7 Safety

- For the crash damaged or unnecessary LCM, it is recommended to wash off liquid crystal by either of solvents such as acetone and ethanol an should be burned up later.
- In the case of LCM is broken, watch out whether liquid crystal leaks out or not. If your hands touch the liquid crystal, wash your hands cleanly with water and soap as soon as possible.
- If you should swallow the liquid crystal, first, wash your mouth thoroughly with water, then drink a lot of water and induce vomiting, and then, consult a physician.
- If the liquid crystal get in your eyes, flush your eyes with running water for at least fifteen minutes.
- If the liquid crystal touches your skin or clothes, remove it and wash the affected part of your skin or clothes with soap and running water.

11.0 Applicable Scope

- •This product specification only applies to the products manufactured and sold by our company.
- Any specification, quality etc. about other parts mentioned in this product spec are no concern of our company.