

PROPRIETARY NOTE

THIS SPECIFICATION IS THE PROPERTY OF BOE FZ AND SHALL NOT BE REPRODUCED OR COPIED WITHOUT THE WRITTEN PERMISSION OF BOE FZ AND MUST BE RETURNED TO BOE CQ UPON ITS REQUEST

DV290FBM-N10 Product Specification Rev. P2

HEFEI BOE Optoelectronics Technology CO., LTD

SPEC. NUMBER	PRODUCT GROUP	Rev P2	ISSUE DATE	PAGE
S8-65-6A-406	TFT-LCD	Rev. P2	2019/09/04	1 OF 35

DAS-RD-2019028-O A4(210 X 297)

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/09/04

REVISION HISTORY

(1	$ \rangle$	preliminary	specification
•	•	I	

() Final specification

Revision No.	Page	Description of changes	Date	Prepared
P0		Initial Release	2019/06/04	Zhou Kun
P1		更新信赖性条件	2019/07/20	Zhou Kun
P2		更新包材、信赖性等信息	2019/09/04	Zhou Kun

SPEC. NUMBER
S8-65-6A-406

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/09/04

Contents

No	ITEM	Page
	REVISIONS HISTORY	2
	CONTENTS	3
1	GENERAL DESCRIPTION	4
	1.1 Introduction	
	1.2 Features	
	1.3 Applications	
	1.4 General Specification	
2	ABSOLUTE MAXIMUM RATINGS	6
3	ELECTRICAL SPECIFICATIONS	7
	3.1 TFT LCD Open Cell	
4	INTERFACE CONNECTION	10
	4.1 Open Cell Input Signal & Power	
	4.2 LVDS Interface	
	4.3 LVDS Rx Interface Timing Parameter	
	4.4 LVDS Receiver Differential Input	
5	SIGNAL TIMING SPECIFICATIONS	15
	5.1 Timing Parameters (DE only mode)	
	5.2 Signal Timing Waveform	
	5.3 Input Signals, Basic Display Colors and Gray Scale of Colors	
	5.4 Power Sequence	
6	OPTICAL SPECIFICATIONS	19
7	MECHANICAL CHARACTERISTICS	21
8	RELIABILITY TEST	22
9	PRODCUT SERIAL NUMBER	23
10	PACKING INFORMATION	24
11	PRECAUTIONS	26
12	APPENDIX	31

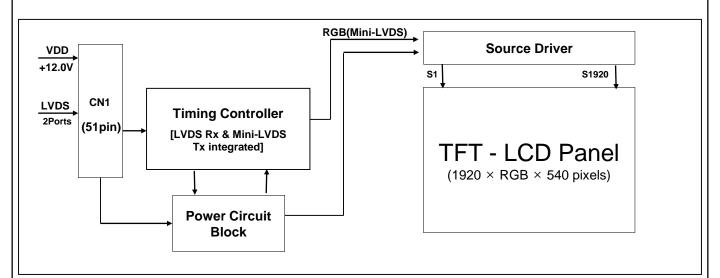
SPEC. NUMBER
S8-65-6A-406

PAGE 3 OF 35

REV

ISSUE DATE

Customer SPEC


Rev. P2

2019/09/04

1.0 GENERAL DESCRIPTION

1.1 Introduction

DV290FBM-N10 is a color active matrix TFT LCD MDL using amorphous silicon TFT's (Thin Film Transistors) as an active switching devices. This MDL has a 29inch diagonally measured active area with FHD resolutions (1920 horizontal by 540 vertical pixel array). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical stripe and this module can display 16.7M colors. The TFT-LCD MDL panel is adapted for a low reflection and higher color type.

1.2 Features

- LVDS interface with 2 pixel / clock
- High-speed response
- Low color shift image quality
- 8-bit color depth, display 16.7M colors
- Wide viewing angle
- DE (Data Enable) only mode
- HADS technology is applied for high display quality
- RoHS compliant

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-6A-406	DV290FBM-N10 Product Specification Rev.P2	4 OF 35

BOE	BOF PRODUCT GROUP		ISSUE DATE
	Customer SPEC	Rev. P2	2019/09/04

1.3 Application

- Commercial Digital Display
- Display Terminals for Control System
- Landscape and Portrait Display

1.4 General Specification

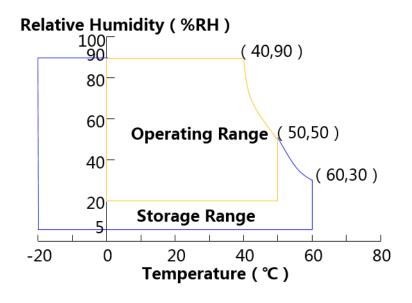
< Table 1. General Specifications >

Parameter	Specification	Unit	Remarks	
Active area	705.6(H)x198.45(V)	mm		
Number of pixels	1920(H) ×540(V)	pixels		
Pixel pitch	122.5(H) x367.5(V)	um		
Pixel arrangement	Pixels RGB Vertical stripe			
Display colors	16.7M	colors	8bits True	
Display mode	Normally Black			
Dimensional outline	720.8(H)*226.25(V)*8.4(Body)	mm	Total thickness 21mm	
Weight	2415 ± 100	g		
Power Consumption	35.8	Watt	Typ.	
Bezel width (L/R/U/D)	5.6/5.6/11.9/11.9	mm		
Surface Treatment	Haze 25% /3H			
Back-light	E-LED, 2ea LED bar-down side			
Possible display type	Landscape and Portrait Enabled			

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-6A-406	DV290FBM-N10 Product Specification Rev.P2	5 OF 35
DAC DD 2010029 O		14(210 V 207)

DAS-RD-2019028-O A4(210 X 297)

PRODUCT GROUP	REV	ISSUE DATE
Customer SPEC	Rev P2	2019/09/04


2.0 ABSOLUTE MAXIMUM RATINGS

The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit. The operational and non-operational maximum voltage and current values are listed in Table 2.

< Table 2. MDL Electrical Specifications >

Parameter	Symbol	Min.	Max.	Unit	Remark
Power Supply Voltage	VDD	8	13.2	V	Ta = 25 ℃
Operating Temperature	T _{OP}	0	+50	°C	
Storage Temperature	T _{SUR}	-20	+60	°C	
Storage Temperature	T _{ST}	-20	+60	°C	
Operating Ambient Humidity	Нор	10	80	%RH Note 1	
Storage Humidity	Hst	10	80	%RH	

Note 1 : Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39 °C max. and no condensation of water.

DAO DD 0040000 O		A 4/040 \/ 00T)
S8-65-6A-406	DV290FBM-N10 Product Specification Rev.P2	6 OF 35
SPEC. NUMBER	SPEC. TITLE	PAGE

PRODUCT GROUP	REV	ISSUE DATE
Customer SPEC	Rev P2	2019/09/04

Rev. P2

3.0 ELECTRICAL SPECIFICATIONS

3.1 TFT LCD Open Cell

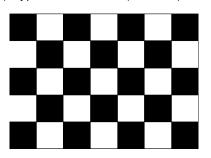
< Table 3. Open Cell Electrical Specifications >

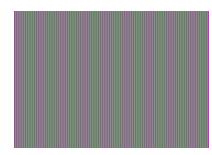
[Ta =25 ± 2 ℃]

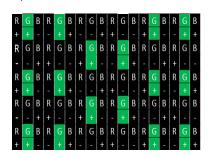
2019/09/04

Davameter		Cymphol		Values		11:0:4	Damark
	Parameter	Symbol	Min	Тур	Max	Watt A mV mV V V V	Remark
Power Sup	ply Input Voltage	VDD	10.8	12	13.2	Vdc	
Power Sup	ply Ripple Voltage	VRP			400	mV	
Power Sup	ply Current	IDD	-	250	500	mA	Note 1
Power Con	sumption	PDD	-	3	6.6	Watt	inole i
Rush curre	nt	IRUSH	-	-	3.0	Α	
	Differential Input High Threshold Voltage	VTH	-		+100	mV	
LVDS Interface	Differential Input Low Threshold Voltage	VTL	-100		-	mV	
	Common Input Voltage	VLC	0.7	-	1.6	V	
	LVDS swing voltage	VID	±100		±600	mV	
	Input High Threshold Voltage	VIH	2.1	-	3.6	V	
CMOS Interface	Input Low Threshold Voltage	VIL	0		1.1	V	
	Input current	IIN	-10	-	10	μΑ	dc nV nA Note 1 A nV nV nV nV V nV V
	Pull low resistor	RPD	50	100	150	ΚΩ	

The current draw and power consumption specified is for VDD=12.0V,


Frame rate f_V =60Hz and Clock frequency = 74.25MHz.


Test Pattern of power supply current


a) Typ: Mosaic 7X5 (L0/L255)

b) Max: Vline Subline (L255))

c) Flicker Pattern

Note 2: The duration of rush current is about 2ms and rising time of Power Input is 1ms(min)

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-6A-406	DV290FBM-N10 Product Specification Rev.P2	7 OF 35

В	()	
	$\underline{}$	

PRODUCT GROUP	REV	ISSUE DATE
Customer SPEC	Rev. P2	2019/09/04

3.0 ELECTRICAL SPECIFICATIONS

3.2 Backlight Unit

< Table 3. Backlight Unit Electrical Specifications >

[Ta =25 ± 2 °C]

							[: = ==== 0]
	Parameter		Min.	Тур.	Max.	Unit	Remarks
LED Forward	LED Forward Voltage		-	3.0	3.2	V	-
LED Forward Current LED Power Consumption		I _F	-	105	-	mA	-
		P _{LED}		32.76	34.95	W	BLU Power Consumption
LED Life-Time		N/A	50000	-	-	Hour	IF = 105mA
PWM	PWM High Level		-	-	-	V	
Control Level	PWM Low Level		-	-	-	V	
PWM Control Frequency Duty Ratio		F_{PWM}	-	-	-	Hz	
		-	-	-	-	%	

Notes : 1. LED Power Consumption Calculator Value for reference IF \times VF \times 104 = PLED

2. The LED Life-time define as the estimated time to 50% degradation of initial luminous.

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-6A-406	DV290FBM-N10 Product Specification Rev.P2	8 OF 35

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/09/04

3.3 Backlight Input Pin Assignments

Connector type: CI1406M1VL0-NH-6pin or equivalent

Pin No.	Symbol	Feature
1	CH1-	I Return CH1,White
2	CH2-	I Return CH2,White
3	CH3+	VLED OUT CH3,Blue
4	CH4+	VLED OUT CH4,Blue
5	CH5-	I Return CH5,White
6	CH6-	I Return CH6,White

DC Input specification

Parameter	Symbol		Unit		
Faiametei	Symbol	Min.	Тур.	Max.	Unit V
LED forward voltage per ch annel	VLED	36.4	39	41.6	\ \
LED forward current per ch annel	ILED	-	105	-	mA

D. 4.0. D.D. 004000000		1 1/0 10 1/ 00=
S8-65-6A-406	DV290FBM-N10 Product Specification Rev.P2	9 OF 35
SPEC. NUMBER	SPEC. TITLE	PAGE

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/09/04

4.0 INTERFACE CONNECTION

- 4.1 MDL Input Signal & Power
 - LVDS Connector: GT05S-51S-H38-E1500/PM.LVS.S040505101.

< Table 4. MDL Input Connector Pin Configuration >

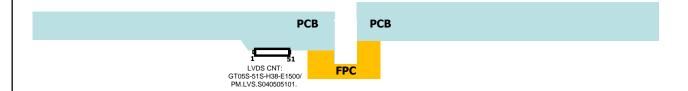
Pi					omiguration >
n No	Symbol	Description	n No	Symbol	Description
1	VDD	Power Supply (12V)	27	ELV1N	Negative Transmission data of Pixel 1 (EVEN)
2	VDD	Power Supply (12V)	28	ELV1P	Positive Transmission data of Pixel 1 (EVEN)
3	VDD	Power Supply (12V)	29	ELV2N	Negative Transmission data of Pixel 2 (EVEN)
4	VDD	Power Supply (12V)	30	ELV2P	Positive Transmission data of Pixel 2 (EVEN)
5	VDD	Power Supply (12V)	31	GND	Ground
6	NC	Not connection, this pin should be open	32	ELVCKN	Negative Transmission Clock(EVEN)
7	GND	Ground	33	ELVCKP	Positive Transmission Clock(EVEN)
8	GND	Ground	34	GND	Ground
9	GND	Ground	35	ELV3N	Negative Transmission data of Pixel 3 (EVEN)
10	OLV0N	Negative Transmission data of Pixel 0 (ODD)	36	ELV3P	Positive Transmission data of Pixel 3 (EVEN)
11	OLV0P	Positive Transmission data of Pixel 0 (ODD)	37	NC	Not connection, this pin should be open
12	OLV1N	Negative Transmission data of Pixel 1 (ODD)	38	NC	Not connection, this pin should be open
13	OLV1P	Positive Transmission data of Pixel 1 (ODD)	39	GND	Ground
14	OLV2N	Negative Transmission data of Pixel 2 (ODD)	40	NC	Not connection, this pin should be open
15	OLV2P	Positive Transmission data of Pixel 2 (ODD)	41	NC	Not connection, this pin should be open
16	GND	Ground	42	NC	Not connection, this pin should be open
17	OLVCKN	Negative Transmission Clock(ODD)	43	NC	Not connection, this pin should be open
18	OLVCKP	Positive Transmission Clock(ODD)	44	NC	Not connection, this pin should be open
19	GND	Ground	45	LVDS_SE L	LVDS format select
20	OLV3N	Negative Transmission data of Pixel 3 (ODD)	46	NC	Not connection, this pin should be open
21	OLV3P	Positive Transmission data of Pixel 3 (ODD)	47	NC	Not connection, this pin should be open
22	NC	Not connection, this pin should be open	48	NC	Not connection, this pin should be open
23	NC	Not connection, this pin should be open			I2C_SCL used for BOE
24	GND	Ground	50	SDA_PG	I2C_SDA used for BOE
25	ELV0N	Negative Transmission data of Pixel 0 (EVEN)	51	NC	Not connection, this pin should be open
26	ELV0P	Positive Transmission data of Pixel 0 (EVEN)			

SPEC. NUMBER	7
S8-65-6A-406	

REV

ISSUE DATE

Customer SPEC


Rev. P2

2019/09/04

Notes: 1. NC(Not Connected): This pins are only used for BOE internal operations.

2. Input Level of LVDS signal is based on the EIA-644 Standard.

TOP view of LCM PCB

BIST Pattern

SPEC. NUMBER
S8-65-6A-406

PRODUCT GROUP	REV	ISSUE DATE
Customer SPEC	Rev. P2	2019/09/04

4.2 LVDS Interface

- LVDS Receiver : Timing Controller (LVDS Rx merged) / LVDS Data : Pixel Data

<	Table 5.	MDL	Input	Connector	Pin	Configuration >
---	----------	-----	-------	-----------	-----	-----------------

Oh ann al Na	Data Na	8-bit LVD	S Туре
Channel No.	Data No.	NS	JEIDA
	Bit-0	R0	R2
0	Bit-1	R1	R3
	Bit-2	R2	R4
	Bit-3	R3	R5
	Bit-4	R4	R6
	Bit-5	R5	R7
	Bit-6	G0	G2
	Bit-0	G1	G3
	Bit-1	G2	G4
	Bit-2	G3	G5
1	Bit-3	G4	G6
	Bit-4	G5	G7
	Bit-5	В0	B2
	Bit-6	B1	В3
	Bit-0	B2	B4
	Bit-1	В3	B5
	Bit-2	В4	B6
2	Bit-3	B5	В7
	Bit-4	HS	HS
	Bit-5	VS	VS
	Bit-6	DE	DE
	Bit-0	R6	R0
	Bit-1	R7	R1
	Bit-2	G6	G0
3	Bit-3	G7	G1
	Bit-4	В6	В0
	Bit-5	В7	B1
	Bit-6	-	-

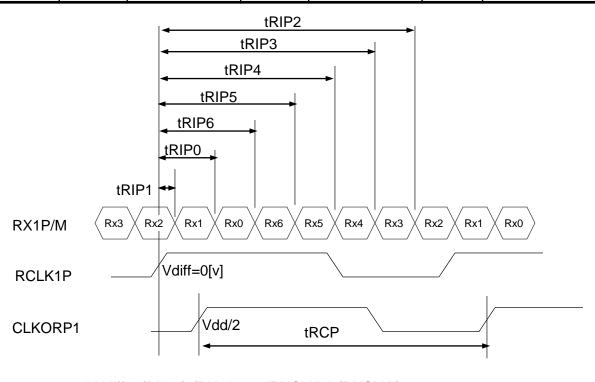
SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-6A-406	DV290FBM-N10 Product Specification Rev.P2	12 OF 35

REV

ISSUE DATE

Customer SPEC

Rev. P2


2019/09/04

4.3 LVDS Rx Interface Timing Parameter

The specification of the LVDS Rx interface timing parameter is shown in Table 6.

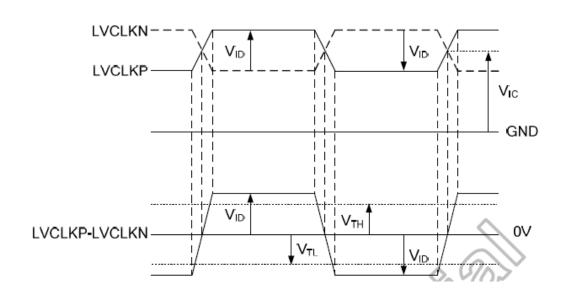
<Table 6. LVDS Rx Interface Timing Specification>

Item	Symbol	Min	Тур	Max	Unit	Remark
CLKIN Period	CLKIN Period tRCP 9.09		Т	40	nsec	
		-0.35	-	0.35	nsec	fCLKIN=110MHz
Receiver Data	tRMG	-0.40	-	0.40	nsec	fCLKIN=95MHz
Input Margin	IKIVIG	-0.45	-	0.45	nsec	fCLKIN=85MHz
		-0.60	-	0.60	nsec	fCLKIN=65MHz
Input Data 0	tRIP1	- tRMG	0.0	tRMG	Clock	
Input Data 1	tRIP0	T/7- tRMG	T/7	T/7+ tRMG	Clock	
Input Data 2	tRIP6	2 T/7- tRMG	2T/7	2T/7+ tRMG	Clock	
Input Data 3	tRIP5	3T/7- tRMG	3T/7	3T/7+ tRMG	Clock	
Input Data 4	tRIP4	4T/7- tRMG	4T/7	4T/7+ tRMG	Clock	
Input Data 5	tRIP3	5T/7- tRMG	5T/7	5T/7+ tRMG	Clock	
Input Data 6	tRIP2	6T/7- tRMG	6T/7	6T/7+ tRMG	Clock	

* Vdiff = (RXz+)-(RXz-),...,(RXCLK+)-(RXCLK-)

SPEC. NUMBER
S8-65-6A-406
SPEC. TITLE
DV290FBM-N10 Product Specification Rev.P2

PAGE 13 OF 35



PRODUCT GROUP	REV	ISSUE DATE
Customer SPEC	Rev P2	2019/09/04

4.4 LVDS Receiver Differential Input

< Table 7-1. LVDS Receiver Differential Input>

Symbol	Parameter	Min	Тур	Max	Uni t	Condition
R _{xVTH}	Differential input high threshold voltage	-	-	+0.1	V	RxVCM =1.2V
R _{xVTL}	R _{xVTL} Differential input low threshold voltage		-	-	V	
R _{XVIN}	Input voltage range (singled-end)	0.7		1.6	٧	
V _{ID}	Differential input voltage	0.1		0.6	V	

S8-65-6A-406	DV290FBM-N10 Product Specification Rev.P2	14 OF 35
SPEC. NUMBER	SPEC. TITLE	PAGE

PRODUCT GROUP REV ISSUE DATE Customer SPEC Rev. P2 2019/09/04

5.0 SIGNAL TIMING SPECIFICATION

5.1 Timing Parameters (DE only mode)

< Table 8. Timing Table >

Item		Symbols Min		Min	Тур	Max	Unit
	Frequency	1/Te	С	60	74.25	78	MHz
Clock	High Time	Tch Tcl		-	4/7Tc	-	
	Low Time			-	3/7Tc	-	
	Franco Davis d	Tv		1100	1125	1149	lines
r	Frame Period			48.5	60	63	Hz
Horizontal Active Display Term		Valid	t _{HV}	-	960	-	t _{CLK}
		Total	t _{HP}	1050	1100	1200	t _{CLK}
V	ertical Active	Valid	t _{VV}	-	1080	-	t _{HP}
[Display Term	Total	t _{VP}	1100	1125	1149	t _{HP}

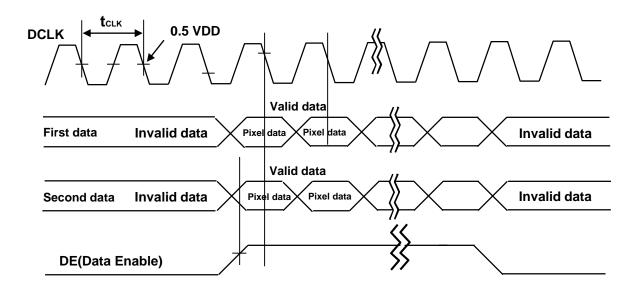
Notes: This product is DE only mode. The input of Hsync & Vsync signal does not have an effect on normal operation.

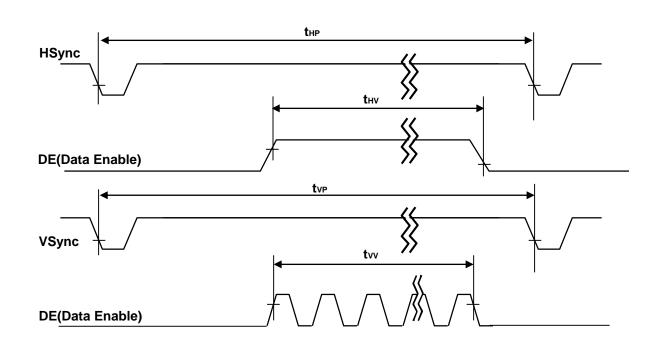
< Table 9. LVDS Input SSCG>

Symbol	Parameter	Condition	Min	Тур	Max	Unit
F	LVDS Input frequency	-	60	74.25	78	MHz
T _{LVSK}	LVDS channel to channel skew	$F=100MHz$ $V_{IC}=1.2V$ $V_{ID}=\pm400mV$	-380	-	+380	ps
F _{LVMOD}	Modulating frequency of input cl ock during SSC		60	-	85	KHz
F _{LVDEV}	Maximum deviation of input clock frequency during SSC		-3	-	+3	%
T _{CY-CY}	Cycle to Cycle jitter		-	-	100	ps

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-6A-406	DV290FBM-N10 Product Specification Rev.P2	15 OF 35

REV


ISSUE DATE


Customer SPEC

Rev. P2

2019/09/04

5.2 Signal Timing Waveform

SPEC. NUMBER
S8-65-6A-406

DAS-RD-2019028-O

SPEC. TITLE

DV290FBM-N10 Product Specification Rev.P2

PAGE 16 OF 35

A4(210 X 297)

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/09/04

5.3 Input Signals, Basic Display Colors and Gray Scale of Colors

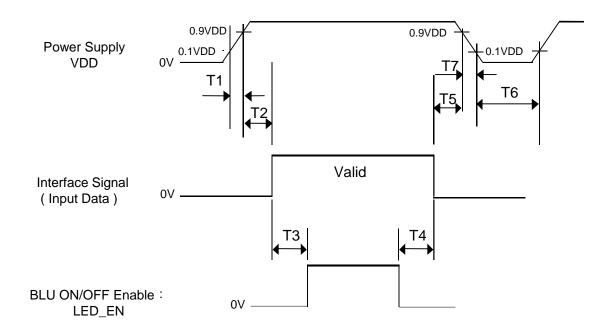
< Table 10. Input Signal and Display Color Table >

		< 1				۰۰۰۲		<u> </u>						Sig					-						
Color & Gray Scale				R	ed	Da	ta			Ė				י D						BI	ue	Da	ta		
		R7	R6					R1	R0	G7				G3			G0	В7	B6					B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Colors	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
001013	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	\triangle	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Darker	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale	\triangle					<u> </u>								<u> </u>								<u> </u>			
of Red	∇				,	ļ							,	ļ								Į			
	Brighter	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	∇	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	\triangle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray Scale	Darker	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
of Green	\triangle														1										
0. 0.00	∇	_		_		_		_					,	_				_			,	ļ _			_
-	Brighter	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
-	∇	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
-	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	<u> </u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray Scale	Darker	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
I ' I														<u> </u>								<u> </u>		—	
of Blue	Brighter	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Drigntei	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
 	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
 		0	_	0	_			0	_	0	0	0	0	_	0	0	1	0	_	_	0	0	0	_	1
	 Darker	0		0	0	0	0	1	0	0	0		0	0	0	1	0	0		0	0	0	0	1	0
Gray Scale		Ť				<u> </u>				٣	U			<u> </u>		<u>'</u>		۲				<u> </u>			Ŭ
of White	$\overline{\nabla}$	\vdash				<u> </u>								 								<u> </u>			
	Brighter	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1
		1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	Ö	1	1	1	1	1	1	1	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

SPEC. NUIVIDER	SPE
S8-65-6A-406	

REV

ISSUE DATE


Customer SPEC

Rev. P2

2019/09/04

5.4 Power Sequence

To prevent a latch-up or DC operation of the MDL, the power on/off sequence shall be as shown in below

< Table 11. Sequence Table >

Doromotor		Values							
Parameter	Min	Тур	Max	Units					
T1	0.5	-	20	ms					
T2	10	-	100	ms					
Т3	200	-	-	ms					
T4	200	-	-	ms					
T5	0	-	-	ms					
T6	1	-	-	S					

- Notes: 1. Back Light must be turn on after power for logic and interface signal are valid.
 - 2. Even though T1 is out of SPEC, it is still ok if the inrush current of VDD is below the limit.
 - 3. When VDD<0.9VDD(Typ.),Power off.
 - 4. T7 decreases smoothly, if there were rebounding voltage, it must smaller than 5 volts.

SPEC. NUMBER SPEC. TITLE		PAGE
S8-65-6A-406 DV290FBM-N10 Product Specific	cation Rev.P2	18 OF 35

PRODUCT GROUP	REV	ISSUE DATE
Customer SPEC	Roy P2	2019/09/04

6.0 OPTICAL SPECIFICATIONS

The test of optical specifications shall be measured in a dark room (ambient luminance ≤ 1 lux and temperature= $25\pm2^{\circ}$ C) with the equipment of Luminance meter system (Goniometer system and PR730) and test unit shall be located at an approximate distance 180cm from the LCD surface at a viewing angle of θ and Φ equal to 0° . We refer to $\theta_{\varnothing=0}$ (= θ_3) as the 3 o'clock direction (the "right"), $\theta_{\varnothing=90}$ (= θ_{12}) as the 12 o'clock direction ("upward"), $\theta_{\varnothing=180}$ (= θ_9) as the 9 o'clock direction ("left") and $\theta_{\varnothing=270}$ (= θ_6) as the 6 o'clock direction ("bottom"). While scanning θ and/or \varnothing , the center of the measuring spot on the Display surface shall stay fixed. The measurement shall be executed after 30 minutes warm-up period. VDD shall be 12.0V at 25°C. Optimum viewing angle direction is 6 'clock.

< Table 12. Optical Table >

[VDD = 12.0V, Frame rate = 60Hz, Ta = 25 ± 2 °C]

Parame	eter	Symbol	Condition	Min	Тур	Max	Unit	Remark
	Horizontal	Θ_3		80	89	1	Deg.	
Viewing	попиона	Θ_9	CR > 10	80	89	ı	Deg.	Note 1
Angle	Vertical	Θ ₁₂	CK > 10	80	89	ı	Deg.	I Note i
	Vertical	Θ_6		80	89	-	Deg.	
Brightn	ess	Lv		560	700	ı	nit	
Contrast	ratio	CR		800:1	1200:1	ı		Note 2
White lumi uniforn		ΔΥ		75	-	ı	%	Note 3
	White	W _x			0.271			
	vvriite	W _y	⊝ = 0°		0.292			
	Pod	R _x	(Center)		0.650			
Reproduction	Red	R_y	Normal Viewing	TYP.	0.332	TYP.		
of color	Green	G _x	Angle	- 0.03	0.287	+ 0.03		Note 4
	Green	G _y			0.616]		
	Blue	B _x			0.145			
	Diue	B _y			0.082			
Color Gamut				69	72	-	%	
Response Time	G to G	T _g		1	15	-	ms	Note 5

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-6A-406	DV290FBM-N10 Product Specification Rev.P2	19 OF 35

PRODUCT GROUP	REV	ISSUE DATE
Customer SPEC	Rev P2	2019/09/04

Note:

- 1. Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing are determined for the horizontal or 3, 9 o'clock direction and the vertical or 6, 12 o'clock direction with respect to the optical axis which is normal to the LCD surface.
- 2. Contrast measurements shall be made at viewing angle of θ = 0° and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state. (See Figure 1 shown in Appendix) Luminance Contrast Ratio (CR) is defined mathematically.

CR = Luminance when displaying a white raster Luminance when displaying a black raster

- 3.The White luminance uniformity on LCD surface is then expressed as : $\Delta Y = (Minimum Luminance of 9 points / Maximum Luminance of 9 points) * 100 (See Figure 5 shown in Appendix).$
- 4. The color chromaticity coordinates specified in Table 12.shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel. The BLU is used by BOE.
- 5. Response time Tg is the average time required for display transition by switching the input signal as below table and is based on Frame rate fV =60Hz to optimize.

 Each time in below table is defined as Figure 2 and shall be measured by switching the

5. Definition of Transmittance (T%):

Module is with white(L255) signal input

Tr. = Luminance of LCD Module

Luminance of BLU

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-6A-406	DV290FBM-N10 Product Specification Rev.P2	20 OF 35

DAS-RD-2019028-O

 \times 100 %

PRODUCT GROUP	REV	ISSUE DATE
Customer SPEC	Rev P2	2019/09/04

7.0 MECHANICAL CHARACTERISTICS

7.1 Dimensional Requirements

Figure 3(located in Appendix) shows mechanical outlines for the model DV290FBM-N10. Other parameters are shown in Table 13.

< Table 13. Dimensional Parameters >

Parameter	Specification	Unit
Dimensional outline	720.8*226.25*8.4(B)	mm
Weight	2415 ± 100	gram
Active area	705.6(H)*198.45(V)	mm
Pixel pitch	122.5(H) ×367.5(V)	um
Number of pixels	$1920(H) \times 540(V)(1 \text{ pixel} = R + G + B \text{ dots})$	pixels
Back-light	E-LED, 2ea LED bar-down side	

7.2 Mounting

See FIGURE 5. (shown in Appendix)

7.3 Anti-Glare and Polarizer Hardness.

The surface of the LCD has an anti-glare coating to minimize reflection and a coating to reduce scratching.

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-6A-406	DV290FBM-N10 Product Specification Rev.P2	21 OF 35

PRODUCT GROUP	REV	ISSUE DATE	
Customer SPEC	Rev P2	2019/09/04	

8.0 RELIABILITY TEST

The Reliability test items and its conditions are shown in below.

< Table 14. Reliability Test Parameters >

No	Test Items		Conditions	
1	High temperature storage test	Ta = 60 °C, 240	hrs	
2	Low temperature storage test	Ta = -20 °C, 240	hrs	
3	High temperature & high humidity operation test	Ta = 50 ℃, 80%	RH, 240hrs, Operation	
4	High temperature operation test	Ta = 60 °C, 240h	nrs	
5	Low temperature operation test	Ta = -5 °C, 240h	rs	
6	8585	85°C, 85%, 240	Ohr, Storage	
7	Thermal shock	Ta = -20 °C ↔ 6	0 °C (0.5 hr), 100 cycle	
8	Vibration test (non-operating)	Frequency 5 ~ 200 Hz, Sweep rate 30 min Gravity / AMP 1.47 G Period X, Y, Z 30 min		
		Gravity	220G	
9	Shock test (non-operating)	Pulse width	2msec, half sine wave	
		Direction	± X, ± Y, ± Z Once for each	
10	On/Off	25°C , 1sec on / 1sec off , 100times ; 10sec on / 5sec off , 30000times , aging 240hr , Operation		

This test condition is based on BOE module.

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-6A-406	DV290FBM-N10 Product Specification Rev.P2	22 OF 35

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/09/04

9.0 PRODCUT SERIAL NUMBER

标签尺寸: 48mm × 12mm, 厚度0.075mm

- 1. FG-CODE: DV290FBM-N10
- 2. MDL ID 对应条形码
- 3. MDL ID

MDL ID Naming Rule:

序列号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
代码	Х	Х	Х	3	Х	Х	Х	3	8	5	0	Х	Х	Х	Х	Х	Х
描述	GB 码	N代	等 级	В3	年	份	月	FG Code后四位				序列	可号				

SPEC. NUMBER
S8-65-6A-406

PRODUCT GROUP	

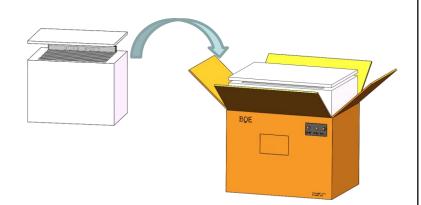
Customer SPEC

Rev. P2

REV

2019/09/04

ISSUE DATE


10.0 PACKING INFORMATION

BOE provides the standard shipping container for customers, unless customer specifies their packing information. The standard packing method and Barcode information are shown in below.

10.1 Packing Order

- -. 将 1ea EPE Bottom 放入Inner Box底部
- -. 将MDL 套入PE Bag 后PCB 向上竖直插入
- .将4pcs MDL 插入卡槽后,
- 顶部盖上1ea EPE Cover
- -. 4pcs/Box

- -. 每个Pallet上放3层Box 1层4箱,共计12ea Box
- -. Pallet外进行缠膜包装
- -. 48pcs LCM / Pallet

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-6A-406	DV290FBM-N10 Product Specification Rev.P2	24 OF 35

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/09/04

10.2 Packing Note

• Box Dimension : 1106mm(L)×477mm(W)×316mm(H)

• Package Quantity in one Box: 8pcs

10.3 Box Label

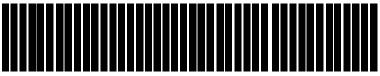
蓝色字体为后打印标识, 说明如下:

Label Size: 110mm*55mm

1. FG-CODE: DV290FBM-N10

- 2. Box 产品数量
- 3. Box ID, 编码规则如下
- 4. Box Packing 日期
- 5. FG-CODE 后四位

3A50 (New Vision IC)


3850(Himax IC)

BOE BOE Technology Group Co., Ltd.

MODEL: DV290FBM-N10 1

QTY: 4 ②

DATE: 20XX / XX/ XX4

3850 (5)

序列 号	1	2	3	4	5	6	7	8	9	10	11	12	13
代码	X	X	X	3	X	X	X	X	X	X	X	X	х
描述	GBN	l代码	等级	В3	年份		月	Rev			序列 号		

SPEC. I	NUN	/IBI	ΞR
S8-65-6	A-4	06	

EG. IIILE	
DV290FBM-N10 Product Specification	Rev.P

PAGE 25 OF 35

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/09/04

11.0 PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD Module.

11.1 Mounting Precautions

- Use finger-stalls with soft gloves in order to keep display clean during the incoming inspection and assembly process.
- You must mount a module using specified mounting holes (Details refer to the drawings)
- You should consider the mounting structure so that uneven force (ex. Twisted stress, Concentrated stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- Do not apply mechanical stress or static pressure on module; Abnormal display cause by pressing some parts of module during assembly process, do not belong to product failure, the press should be agreed by two sides.
- Determine the optimum mounting angle, refer to the viewing angle range in the specification for each model.
- Do not apply mechanical stress or static pressure on module, and avoid impact, vibration and falling.
- Acetic acid type and chlorine type materials for the cover case are not desirable because
 the former generates corrosive gas of attacking the polarizer at high temperature and the
 latter causes circuit break by electro-chemical reaction.
- Protection film for polarizer on the module should be slowly peeled off before display.
- Be careful to prevent water & chemicals contact the module surface.
- You should adopt radiation structure to satisfy the temperature specification.
- Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment.
 Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- When the surface becomes dusty, please wipe gently with absorbent cotton or other soft
 materials like chamois soaks with petroleum benzine. Normal-hexane & alcohol is
 recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use
 acetone, toluene, because they cause chemical damage to the polarizer.
- Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading..

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-6A-406	DV290FBM-N10 Product Specification Rev.P2	OF 35

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/09/04

- This module has its circuitry PCB's on the rear side and Driver IC, should be handled carefully in order not to be stressed.
- Avoid impose stress on PCB and Driver IC during assembly process, Do not drawing, bending, COF package & wire
- Do not disassemble the module.

11.2 Operating Precautions

- Do not connector or disconnect the cable to/from the Module at the "Power On" Condition.
- When the module is operating, do not lose CLK, ENAB signals. If any one of these signals is lost, the module would be damaged.
- Obey the supply voltage sequence. If wrong sequence is applied, the module would be damaged.
- Do not allow to adjust the adjustable resistance or switch
- The electrochemical reaction caused by DC voltage will lead to LCD module degradation, so DC drive should be avoided.
- The LCD modules use C-MOS LSI drivers, so customers are recommended that any
 unused input terminal would be connected to Vdd or Vss, do not input any signals before
 power is turn on, and ground you body, work/assembly area, assembly equipment to
 protect against static electricity.
- Do not exceed the absolute maximum rating value. (supply voltage variation, input voltage variation, variation in part contents and environmental temperature, and so on) Otherwise the Module may be damaged.
- Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- Design the length of cable to connect between the connector for back-light and the converter as shorter as possible and the shorter cable shall be connected directly, The long cable between back-light and Converter may cause the Luminance of LED to lower and need a higher startup voltage
- The cables should be as short as possible between System Board and PCB interface.
- Connectors are precision devices to transmit electrical signals, and operators should plug in parallel
- Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-6A-406	DV290FBM-N10 Product Specification Rev.P2	OF 35

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/09/04

11.3 Electrostatic Discharge Precautions

- Avoid the use work clothing made of synthetic fibers. We recommend cotton clothing or other conductivity-treated fibers.
- Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc.
- Do not close to static electricity to avoid product damage.
- · Do not touch interface pin directly.

11.4 Precautions for Strong Light Exposure

 Do not leave the module operation or storage in Strong light . Strong light exposure causes degradation of polarizer and color filter.

11.5 Precautions for Storage

A. Atmosphere Requirement

ITEM	UNIT	MIN	MAX
Storage Temperature	(°C)	5	40
Storage Humidity	(%rH)	40	75
Storage Life		6 months	
Storage Condition	facility. Prevent products from and water. The product need to k Be careful for conden	buld be equipped with a dark in being exposed to the direct seep away from organic solves assistant at sudden temperatur guaranteed under packing co	vent and corrosive gas.

B. Package Requirement

- The product should be placed in a sealed polythene bag.
- Product Should be placed on the pallet, Which is away from the floor, Be cautions not to pile the product up.
- The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.
- As the original protective film, do not use the adhesive protective film to avoid change of Pol color and characteristic.

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-6A-406	DV290FBM-N10 Product Specification Rev.P2	OF 35

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/09/04

11.6 Precautions for protection film

- Remove the protective film slowly, keeping the removing direction approximate 30-degree not vertic al from panel surface, If possible, under ESD control device like ion blower, and the humidity of wor king room should be kept over 50%RH to reduce the risk of static charge.
- People who peeled off the protection film should wear anti-static strap and grounded well.

11.7 Appropriate Condition for Commercial Display

-Generally large-sized LCD modules are designed for consumer applications. Accordingly, long-term display like in Commercial Display application, can cause uneven display including image sticking. To optimize module's lifetime and function, several operating usages are required.

- 1. Normal operating condition
- Temperature: 20±15°C
- Operating Ambient Humidity: 55±20%
- Display pattern: dynamic pattern (Real display)
- Well-ventilated place is recommended to set up Commercial Display system
- 2. Special operating condition
 - a. Ambient condition
 - Well-ventilated place is recommended to set up Commercial Display system.
 - b. Power and screen save
 - Periodical power-off or screen save is needed after long-term display.
 - c. As the low temperature, the response time is greatly delayed. As the high temperatures (higher than the operating temperature) the LCD module may turn black screen. The above phenomenon cannot explain the failure of the display. When the temperature returns to the normal operating temperature, the LCD module will return to normal display.
 - d. When expose to drastic fluctuation of temperature (hot to cold or cold to hot) ,the LCD module may be affected; Specifically, drastic temperature fluctuation from cold to hot ,produces dew on the LCD module 's surface which may affect the operation of the polarizer and LCD module e. Do not exceed the absolute maximum rating value. (supply voltage variation, input voltage variation, variation in part contents and environmental temperature, and so on) Otherwise the Module may be damaged.

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-6A-406	DV290FBM-N10 Product Specification Rev.P2	OF 35

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/09/04

f. Product reliability and functions are only guaranteed when the product is used under right operation usages. If product will be used in extreme conditions such as high temperature, high humidity, high altitude, special display images, running time, long time operation, outdoor operation, etc. It is strongly recommended to contact BOE for filed application engineering advice. Otherwise, its reliability and function may not be guaranteed. Extreme conditions are commonly found at airports, transit stations, banks, stock market and controlling systems.

- 3. Operating usages to protect against image sticking due to long-term static display.
 - a. Suitable operating time: under 20 hours a day.
 - b. Static information display recommended to use with moving image.
 - Cycling display between 5 minutes' information(static) display and 10 seconds' moving image.
 - c. Background and character (image) color change
 - Use different colors for background and character, respectively.
 - Change colors themselves periodically.
 - d. Avoid combination of background and character with large different luminance.
 - 1) Abnormal condition just means conditions except normal condition.
 - 2) Black image or moving image is strongly recommended as a screen save
- 4. Lifetime in this spec. is guaranteed only when Commercial Display is used according to operating usages.

11.8 Other Precautions

A. LC Leak

- If the liquid crystal material leaks from the panel, it is recommended to wash the LC with acetone or ethanol and then burn it.
- If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- If LC in mouth, mouth need to be washed, drink plenty of water to induce vomiting and follow medical advice.
- If LC touch eyes, eyes need to be washed with running water at least 15 minutes.

B. Rework

• When returning the module for repair or etc., Please pack the module not to be broken. We recommend to use the original shipping packages.

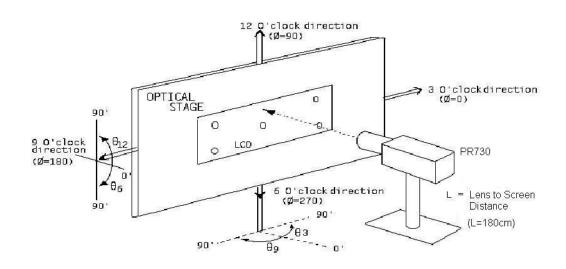
SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-6A-406	DV290FBM-N10 Product Specification Rev.P2	OF 35

D	U	

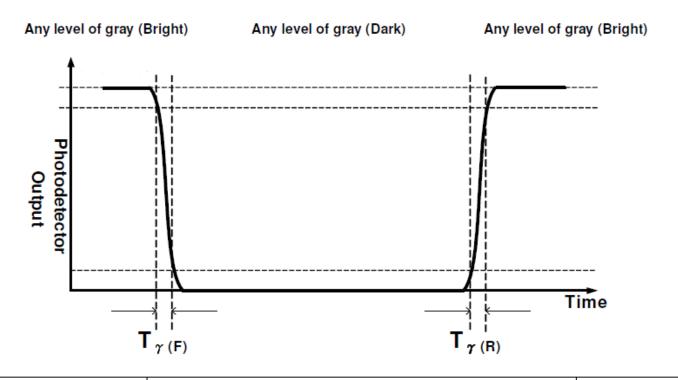
PRODUCT GROUP

REV

ISSUE DATE


Customer SPEC

Rev. P2


2019/09/04

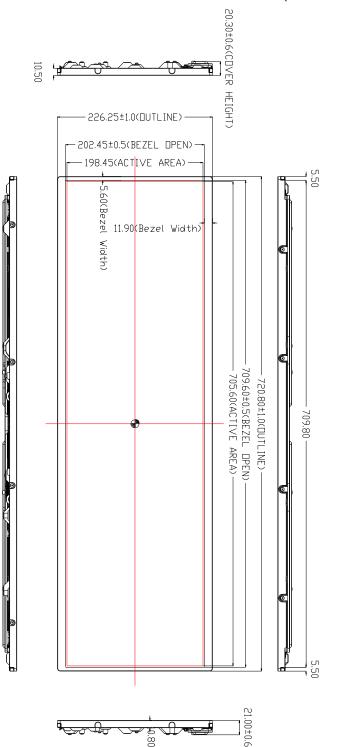
12.0 APPENDIX

< Figure 1. Measurement Set Up >

< Figure 2. Response Time Testing >

SPEC. NUMBER
S8-65-6A-406

REV


ISSUE DATE

Customer SPEC

Rev. P2

2019/09/04

< Figure 3.TFT-LCD Module Outline Dimensions (Front View) >

SPEC. NUMBER S8-65-6A-406

SPEC. TITLE
DV290FBM-N10 Product Specification Rev.P2

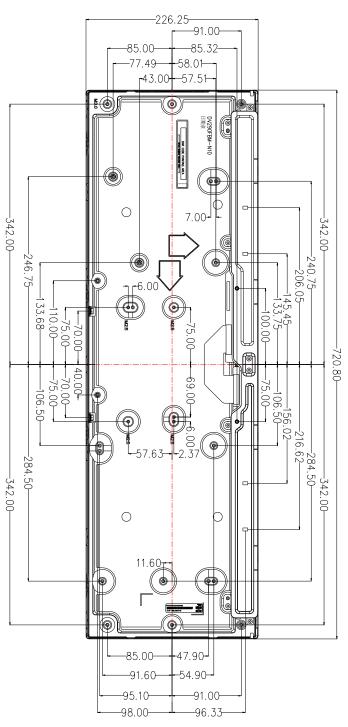
PAGE 32 OF 35

Display Direction

DAS-RD-2019028-O

A4(210 X 297)

 REV


ISSUE DATE

Customer SPEC

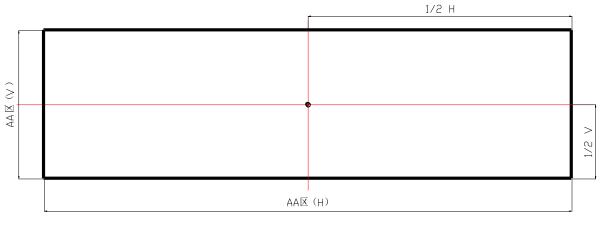
Rev. P2

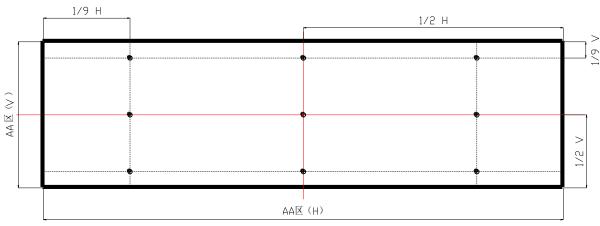
2019/09/04

< Figure 4.TFT-LCD Module Outline Dimensions (Rear View) >

SPEC. NUMBER
S8-65-6A-406

REV


ISSUE DATE


Customer SPEC

Rev. P2

2019/09/04

< Figure 5. White Luminance and Uniformity Measurement Locations >

SPEC. NUMBER
S8-65-6A-406